例1已知向量a.b.c.d.求作向量a-b.c-d 解:在平面上取一点O.作= a, = b, = c, = d, 作, , 则= a-b, = c-d 例2平行四边形中...用.表示向量. 解:由平行四边形法则得: = a + b, = = a-b 变式一:当a, b满足什么条件时.a+b与a-b垂直?(|a| = |b|) 变式二:当a, b满足什么条件时.|a+b| = |a-b|?(a, b互相垂直) 变式三:a+b与a-b可能是相当向量吗?(不可能.∵对角线方向不同) 查看更多

 

题目列表(包括答案和解析)

在A、B、C、D四小题中只能选做2题,每小题10,共计20分。请在答题卡指定区域作答。解答应写出文字说明、证明过程或演算步骤。

A、选修4-1:几何证明选讲

   如图,已知梯形ABCD为圆内接四边形,AD//BC,过C作该圆的切线,交AD的延长线于E,求证:ΔABC∽ΔEDC。

B、选修4-2:矩形与变换

已知 为矩阵属于λ的一个特征向量,求实数a,λ的值及A2。

C、选修4-4:坐标系与参数方程

   在平面直角坐标系xoy中,曲线C的参数方程为(α为参数),曲线D的参数方程为,(t为参数)。若曲线C、D有公共点,求实数m的取值范围。

D、选修4-5:不等式选讲

   已知a,b都是正实数,且ab=2。求证:(1+2a)(1+b)≥9。

 

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10,共计20分。请在答题卡指定区域作答。解答应写出文字说明、证明过程或演算步骤。
A、选修4-1:几何证明选讲
如图,已知梯形ABCD为圆内接四边形,AD//BC,过C作该圆的切线,交AD的延长线于E,求证:ΔABC∽ΔEDC。

B、选修4-2:矩形与变换
已知为矩阵属于λ的一个特征向量,求实数a,λ的值及A2。
C、选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,曲线C的参数方程为(α为参数),曲线D的参数方程为,(t为参数)。若曲线C、D有公共点,求实数m的取值范围。
D、选修4-5:不等式选讲
已知a,b都是正实数,且ab=2。求证:(1+2a)(1+b)≥9。

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10,共计20分。请在答题卡指定区域作答。解答应写出文字说明、证明过程或演算步骤。
A、选修4-1:几何证明选讲
如图,已知梯形ABCD为圆内接四边形,AD//BC,过C作该圆的切线,交AD的延长线于E,求证:ΔABC∽ΔEDC。

B、选修4-2:矩形与变换
已知为矩阵属于λ的一个特征向量,求实数a,λ的值及A2。
C、选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,曲线C的参数方程为(α为参数),曲线D的参数方程为,(t为参数)。若曲线C、D有公共点,求实数m的取值范围。
D、选修4-5:不等式选讲
已知a,b都是正实数,且ab=2。求证:(1+2a)(1+b)≥9。

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

(选做题)在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
(B)(选修4-2:矩阵与变换)
二阶矩阵M有特征值λ=8,其对应的一个特征向量e=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成点(-2,4),求矩阵M2
(C)(选修4-4:坐标系与参数方程)
已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈R).试在曲线C上一点M,使它到直线l的距离最大.

查看答案和解析>>


同步练习册答案