代入x2-=1.整理得(2-k2)x2-2k(2-k)x-(2-k)2-2=0 ① 查看更多

 

题目列表(包括答案和解析)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

精英家教网已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(Ⅰ)求P点的轨迹方程;
(Ⅱ)求线段PQ长的最小值,并求此时PQ的斜率.

查看答案和解析>>

在计算“
1
1×2
+
1
2×3
+…+
1
n(n+1)
(n∈N)”时,某同学学到了如下一种方法:
先改写第k项:
1
k(k+1)
=
1
k
-
1
k+1

由此得
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
4
1
n(n+1)
=
1
n
-
1
n+1

相加,得
1
1×2
+
1
2×3
+…+
1
n(n+1)
=1-
1
n+1
=
n
n+1

类比上述方法,请你计算“
1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
(n∈N)”,其结果为
 

查看答案和解析>>

(1)设x∈R,比较x3与x2-x+1的大小.

(2)设a>0,b>0,求证:

 

查看答案和解析>>

(1)设x∈R,比较x3与x2-x+1的大小.
(2)设a>0,b>0,求证:

查看答案和解析>>


同步练习册答案