解:∵四棱锥S―ABCD中ABCD为直角梯形.又∵BC⊥AB ∴AD⊥AB又∵SA⊥面ABCD ∴SA⊥AB SA⊥AD又∵AD⊥AB.AD⊥SA.AB∩SA=A∴AD⊥平面SAB 查看更多

 

题目列表(包括答案和解析)

如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且BC=2AD=2,AB=4,SA=3.
(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足
BF
BS
=
BE
BC
=λ.(0<λ<1)
①求证:对于任意的λ∈(0,1),恒有SC∥平面AEF;
②是否存在λ,使得△AEF为直角三角形,若存在,求出所有符合条件的λ值;若不存在,说明理由.

查看答案和解析>>

如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.底面ABCD为矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求证:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

(2008•湖北模拟)如图,已知四棱锥S-ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD的中点,Q为SB的中点.
(Ⅰ)求证:PQ∥平面SCD;
(Ⅱ)求二面角B-PC-Q的大小.

查看答案和解析>>

17、如图,四棱锥S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分别为SB、SD中点,求证:
(1)DB∥平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

精英家教网如图,在底面是菱形的四棱锥S-ABCD中,SA=AB=2,SB=SD=2
2

(1)证明:BD⊥平面SAC;
(2)问:侧棱SD上是否存在点E,使得SB∥平面ACE?请证明你的结论.

查看答案和解析>>


同步练习册答案