解:设z=x+yi(x.y∈R).∵|z|=5.∴x2+y2=25.而(3+4i)z=(3+4i)(x+yi)=(3x-4y)+(4x+3y)i.∴3x-4y+4x+3y=0.得y=7x 查看更多

 

题目列表(包括答案和解析)

已知z=x+yi(x,y∈R),且 2x+y+ilog2x-8=(1-log2y)i,则z=(  )

查看答案和解析>>

已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.
(Ⅰ)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个
数作为y,求复数z为纯虚数的概率;
(Ⅱ)设x∈[0,3],y∈[0,4],求点M落在不等式组:
x+2y-3≤0
x≥0
y≥0
所表示的平面区域内的概率.

查看答案和解析>>

(2007•上海模拟)设z=x+yi(x,y∈R),i是虚数单位,满足4≤z+
64z
≤10

(1)求证:y=0时满足不等式的复数不存在.
(2)求出复数z对应复平面上的轨迹.

查看答案和解析>>

设复数z=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)设复数z满足条件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常数a∈ (
3
2
 , 3)
),当n为奇数时,动点P(x,y)的轨迹为C1;当n为偶数时,动点P(x,y)的轨迹为C2,且两条曲线都经过点D(2,
2
)
,求轨迹C1与C2的方程;
(2)在(1)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于
2
3
3
,求实数x0的取值范围.

查看答案和解析>>

设复数z=x+yi(x,y∈R),i为虚数单位,若|z|=1,则x+y的最大值为
2
2

查看答案和解析>>


同步练习册答案