设.且.求 . 答案: 解析:∵ ∴作直角△ABC.令 利用勾股定理得知 再由锐角三角函数的定义知 查看更多

 

题目列表(包括答案和解析)

(本小题共13分)若有穷数列{an}满足:(1)首项a1=1,末项am=k,(2)an+1= an+1或an+1=2an ,(n=1,2,…,m-1),则称数列{an}为k的m阶数列.

(Ⅰ)请写出一个10的6阶数列;

(Ⅱ)设数列{bn}是各项为自然数的递增数列,若,且,求m的最小值.

(考生务必将答案答在答题卡上,在试卷上作答无效)

 

 

查看答案和解析>>

精英家教网如图直角梯形OABC中,∠COA=∠OAB=
π
2
,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz.
(1)求
SC
OB
的夹角α
的大小(用反三角函数表示);
(2)设
n
=(1,p,q),满足
n
⊥平面SBC,求:
n
的坐标;
②OA与平面SBC的夹角β(用反三角函数表示);
③O到平面SBC的距离.
(3)设
k
=(1,r,s)满足
k
SC
k
OB
.填写:

k
的坐标为
 

②异面直线SC、OB的距离为
 
.(注:(3)只要求写出答案)

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

       由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f -1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.

   (1)若函数f(x)=确定数列{an}的自反数列为{bn},求an

   (2)已知正数数列{cn}的前n项之和Sn=(cn+).写出Sn表达式,并证明你的结论;

   (3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.

参考答案

查看答案和解析>>

已知椭圆=1,点P为其上一点,F1、F2为椭圆的焦点,Q为射线延长线上一点,且|PQ|=|PF2|,设R为F2Q的中点。

(1)当P点在椭圆上运动时,求R形成的轨迹方程;

(2)设点R形成的曲线为C,直线l:y=k(x+4)与曲线C相交于A、B两点,若∠AOB=90o时,

求k的值.

(请注意把答案填写在答题卡上)

查看答案和解析>>


同步练习册答案