是否存在一个单调递增的等比数列.使其满足下列二个条件:①且,②至少存在一个.使依次成等差数列.若存在.写出数列的通项公式,若不存在.请说明理由. 集体研讨: 教学反思: 备注: 备课组长签字: 年 月 日 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn
a
2(a-1)
an
,n(a≠0,a≠1)成等差数列,令bn=(an+1)lg(an+1).
(1)求数列{an}的通项公式an(用a,n表示)
(2)当a=
8
9
时,数列{bn}是否存在最小项,若有,请求出第几项最小;若无,请说明理由;
(3)若{bn}是一个单调递增数列,请求出a的取值范围.

查看答案和解析>>

(14分)

已知数列的前项和为,且对任意正整数,有()成等差数列,令

(1)求数列的通项公式(用表示)

(2)当时,数列是否存在最小项,若有,请求出第几项最小;若无,请说明理由;

(3)若是一个单调递增数列,请求出的取值范围。

 

查看答案和解析>>

已知数列的前项和为,且对任意正整数,有)成等差数列,令

(1)求数列的通项公式(用表示)

(2)当时,数列是否存在最小项,若有,请求出第几项最小;若无,请说明理由;

(3)若是一个单调递增数列,请求出的取值范围。

查看答案和解析>>

(14分) 已知数列的前项和为,且对任意正整数,有()成等差数列,令

(1)求数列的通项公式(用表示)

(2)当时,数列是否存在最小项,若有,请求出第几项最小;若无,请说明理由;

(3)若是一个单调递增数列,请求出的取值范围。

查看答案和解析>>

已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn,n(a≠0,a≠1)成等差数列,令bn=(an+1)lg(an+1).
(1)求数列{an}的通项公式an(用a,n表示)
(2)当时,数列{bn}是否存在最小项,若有,请求出第几项最小;若无,请说明理由;
(3)若{bn}是一个单调递增数列,请求出a的取值范围.

查看答案和解析>>


同步练习册答案