题目列表(包括答案和解析)
(本小题满分14分)已知函数
,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n ÎN *),x1=4.
(Ⅰ)用
表示xn+1;
(Ⅱ)记an=lg
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若bn=xn-2,试比较
与
的大小.
(本小题满分14分)已知函数
,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n Î N *),x1=4.
(Ⅰ)用
表示xn+1;
(Ⅱ)记an=lg
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若bn=xn-2,试比较
与
的大小.
本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)(本小题满分7分)选修4—2:矩阵与变换
已知二阶矩阵
有特征值
及对应的一个特征向量
.
(Ⅰ)求矩阵
;
(Ⅱ)设曲线
在矩阵
的作用下得到的方程为
,求曲线
的方程.
(2)(本小题满分7分)选修4—4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),若圆
在以该直角坐标系的原点
为极点、
轴的正半轴为极轴的极坐标系下的方程为
.
(Ⅰ)求曲线
的普通方程和圆
的直角坐标方程;
(Ⅱ)设点
是曲线
上的动点,点
是圆
上的动点,求
的最小值.
(3)(本小题满分7分)选修4—5:不等式选讲
已知函数
,不等式
在
上恒成立.
(Ⅰ)求
的取值范围;
(Ⅱ)记
的最大值为
,若正实数
满足
,求
的最大值.
本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-2:矩阵与变换选做题
已知矩阵A=
有一个属于特征值1的特征向量
.
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
,点O(0,0),M(2,-1),N(0,2),求
在矩阵AB的对应变换作用下所得到的
的面积.
(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线
的参数方程为
,曲线
的极坐标方程为
.
(Ⅰ)将曲线
的参数方程化为普通方程;(Ⅱ)判断曲线
与曲线
的交点个数,并说明理由.
(3)(本小题满分7分)选修4-5:不等式选讲选做题
已知函数
,不等式
在
上恒成立.
(Ⅰ)求
的取值范围;
(Ⅱ)记
的最大值为
,若正实数
满足
,求
的最大值.
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.作
(1)选修4—2:矩阵与变换
若二阶矩阵
满足
.
(Ⅰ)求二阶矩阵
;
(Ⅱ)把矩阵
所对应的变换作用在曲线
上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系
中,曲线
的参数方程为
(t为非零常数,
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,直线
的方程为
.
(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数
,使得直线
与曲线C有两个不同的公共点
、
,且
(其中
为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4—5:不等式选讲
已知函数
的最小值为
,实数
满足
.
(Ⅰ)求
的值;
(Ⅱ)求证:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com