1.求抛物线方程的方法:待定系数法,定义法,直接法; 查看更多

 

题目列表(包括答案和解析)

(2007•浦东新区二模)已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(1)求抛物线C的方程.
(2)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中点,过M作平行于x轴的直线交抛物线C于点D,得到△ABD;再分别过弦AD、BD的中点作平行于x轴的直线依次交抛物线C于点E,F,得到△ADE和△BDF;按此方法继续下去.
解决下列问题:
①求证:a2=
16(1-kb)k2

②计算△ABD的面积S△ABD
③根据△ABD的面积S△ABD的计算结果,写出△ADE,△BDF的面积;请设计一种求抛物线C与线段AB所围成封闭图形面积的方法,并求出此封闭图形的面积.

查看答案和解析>>

(本题满分15分)已知直线过抛物线的焦点.

(1)求抛物线方程;

(2)设抛物线的一条切线,若,求切点坐标.

(方法不唯一)

 

查看答案和解析>>

如图,直线与抛物线交于两点,与轴相交于点,且.

(1)求证:点的坐标为

(2)求证:

(3)求的面积的最小值.

【解析】设出点M的坐标,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为,然后与抛物线方程联立消x,根据,即可建立关于的方程.求出的值.

(2)在第(1)问的基础上,证明:即可.

(3)先建立面积S关于m的函数关系式,根据建立即可,然后再考虑利用函数求最值的方法求最值.

 

查看答案和解析>>

已知P(x0,y0)是抛物线y2=2px(p>0)上的一点,过P点的切线方程的斜率可通过如下方式求得:
在y2=2px两边同时对x求导,得:2yy′=2p,则y′=
p
y
,所以过P的切线的斜率:k=
p
y0
试用上述方法求出双曲线x2-
y2
2
=1
P(
2
2
)
处的切线方程为
 

查看答案和解析>>

(2012•奉贤区二模)平面内一动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于1.
(1)求动点P(x,y)的轨迹C方程,用y2=f(x)形式表示;
(2)类似高二第二学期教材(12.4椭圆的性质、12.6双曲线的性质、12.8抛物线的性质)中研究曲线的方法请你研究轨迹C的性质,请直接写出答案;
(3)求△PF1F2周长的取值范围.

查看答案和解析>>


同步练习册答案