1求证: 证明:左边==右边 或:右边=tan(x-) ==左边 2若0<α<β<.sinα+cosα=.sinβ+cosβ=b.则 Aab<1 Ba>b Ca<b Dab>2 解:sinα+cosα=sin(α+)=a sinβ+cosβ=sin(β+)=b 又∵0<α<β< ∴0<α+<β+< ∴sin(α+)<sin(β+) ∴<b 答案:C 查看更多

 

题目列表(包括答案和解析)

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;

(3)求证:圆内的点都不是“C1—C2型点”.

 

查看答案和解析>>

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;

(3)求证:圆内的点都不是“C1—C2型点”.

 

查看答案和解析>>

(2013•上海)如图,已知双曲线C1
x2
2
-y2=1
,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
1
2
内的点都不是“C1-C2型点”

查看答案和解析>>

已知圆O:轴于AB两点,曲线C是以为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点P的坐标为(1,1),求证:直线PQ与圆相切;

(Ⅲ)试探究:当点P在圆O上运动时(不与AB重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

如图,已知双曲线C1,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点“

(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;

(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”

 

查看答案和解析>>


同步练习册答案