热点问题一:数列 数列是高中数学的重要内容.又是学习高等数学的基础.高考对本章的考查比较全面.等差数列.等比数列的考查每年都不会遗漏.有关数列的试题经常是综合题.经常把数列知识和指数函数.对数函数和不等式的知识综合起来.试题也常把等差数列.等比数列.求极限和数学归纳法综合在一起.探索性问题是高考的热点.常在数列解答题中出现.本章中还蕴含着丰富的数学思想.在主观题中着重考查函数与方程.转化与化归.分类讨论等重要思想.以及配方法.换元法.待定系数法等基本数学方法. 近几年来.高考关于数列方面的命题主要有以下三个方面,(1)数列本身的有关知识.其中有等差数列与等比数列的概念.性质.通项公式及求和公式.(2)数列与其它知识的结合.其中有数列与函数.方程.不等式.三角.几何的结合.(3)数列的应用问题.其中主要是以增长率问题为主.试题的难度有三个层次.小题大都以基础题为主.解答题大都以基础题和中档题为主.只有个别地方用数列与几何的综合.与函数.不等式的综合作为最后一题.难度较大.(文科考查以基础为主.有可能是压轴题) 查看更多

 

题目列表(包括答案和解析)

(2007•上海)我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)设第2行的数依次为B1,B2,…,Bn,试用n,q表示B1+B2+…+Bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2
(3)请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).
①能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm (m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.
②能否找到q的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.

(文)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为,公差为的无穷等差数列的子数列问题,为此,他取了其中第一项,第三项和第五项.

(1) 若成等比数列,求的值;

(2) 在, 的无穷等差数列中,是否存在无穷子数列,使得数列为等比数列?若存在,请给出数列的通项公式并证明;若不存在,说明理由;

(3) 他在研究过程中猜想了一个命题:“对于首项为正整数,公比为正整数()的无穷等比数  列,总可以找到一个子数列,使得构成等差数列”. 于是,他在数列中任取三项,由的大小关系去判断该命题是否正确. 他将得到什么结论?

 

查看答案和解析>>

21.我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为的数列依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.

 

第1列

第2列

第3列

第1行

1

1

1

1

第2行

 

 

 

 

第3行

 

 

 

 

 

 

 

 

 

 

 

 

(1) 设第2行的数依次为,试用表示的值;

(2) 设第3列的数依次为,求证:对于任意非零实数

(3) 请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).

    ① 能否找到的值,使得(2) 中的数列的前 () 成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.

    ② 能否找到的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.

查看答案和解析>>

我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)设第2行的数依次为B1,B2,…,Bn,试用n,q表示B1+B2+…+Bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2
(3)请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).
①能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm (m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.
②能否找到q的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.

查看答案和解析>>

我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.
第1列第2列第3列第n列
第1行1111
第2行q
第3行q2
第n行qn-1
(1)设第2行的数依次为B1,B2,…,Bn,试用n,q表示B1+B2+…+Bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2
(3)请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).
①能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm (m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.
②能否找到q的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.

查看答案和解析>>


同步练习册答案