绝对值不等式: 注:均值不等式可以用来求最值, 特别要注意条件的满足:一正.二定.三相等. 课前预习 查看更多

 

题目列表(包括答案和解析)

绝对值不等式|x-2|<x2的解集是
(-∞,-2)∪(1,+∞)
(-∞,-2)∪(1,+∞)

查看答案和解析>>

A={x||x-1|<2},B={x|>0},则AB等于

A.{x|-1<x<3}                                                B.{x|x<0或x>2}

C.{x|-1<x<0}                                                 D.{x|-1<x<0或2<x<3}

本题考查含绝对值不等式、分式不等式的解法及集合的运算.在进行集合运算时,把解集标在数轴上,借助图形可直观求解.

查看答案和解析>>

解关于x的不等式|2x+m|<xm(x∈R).

本题考查含有绝对值不等式的解法.解题关键是对m进行分类讨论.

查看答案和解析>>

在下列各命题中:

①|a+b|-|ab|≤2|b|;

ab∈R+,且x≠0,则|ax+|≥2

③若|xy|<ε,则|x|<|y|+ε

④当且仅当ab<0或ab=0时,|a|-|b|≤|a+b|中的等号成立.

其中真命题的序号为__________.

本题主要考查绝对值不等式|a|-|b|≤|a±b|≤|a|+|b|的应用.

查看答案和解析>>

已知|a+b|<-c(a、b、c∈R),给出下列不等式:

①a<-b-c;②a>-b+c;③a<b-c;④|a|<|b|-c;⑤|a|<-|b|-c.

其中一定成立的不等式是___________________________.(注:把成立的不等式序号都填上)

查看答案和解析>>


同步练习册答案