题目列表(包括答案和解析)
| a |
| x |
| a |
| a |
| b2 |
| x |
| c |
| x2 |
| a |
| x |
| a |
| x2 |
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| 2 |
已知函数
有如下性质:如果常数
,那么该函数在(0,
)上减函数,在
是增函数。
(1)如果函数
的值域为
,求
的值;
(2)研究函数
(常数
)在定义域的单调性,并说明理由;
(3)对函数
和
(常数
)作出推广,使它们都是你所推广的函数的特例。研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
(n是正整数)在区间[
,2]上的最大值和最小值(可利用你的研究结论)。
已知函数
=
+
有如下性质:如果常数
>0,那么该函数在
0,![]()
上是减函数,在![]()
,+∞
上是增函数.
(Ⅰ)如果函数
=
+
(
>0)的值域为
6,+∞
,求
的值;
(Ⅱ)研究函数
=
+
(常数
>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数
=
+
和
=
+
(常数
>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
(
是正整数)在区间[
,2]上的最大值和最小值(可利用你的研究结论).
(16分)设
使定义在区间
上的函数,其导函数为
.如果存在实数
和函数
,其中
对任意的
都有
>0,使得
,则称函数
具有性质
.
(1)设函数![]()
,其中
为实数
①求证:函数
具有性质![]()
②求函数
的单调区间
(2)已知函数
具有性质
,给定![]()
,
,且
,若|
|<|
|,求
的取值范围
(16分)设
使定义在区间
上的函数,其导函数为
.如果存在实数
和函数
,其中
对任意的
都有
>0,使得
,则称函数
具有性质
.
(1)设函数![]()
,其中
为实数
①求证:函数
具有性质![]()
②求函数
的单调区间
(2)已知函数
具有性质
,给定![]()
,
,且
,若|
|<|
|,求
的取值范围
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com