解:(1).. 又.∴数列是首项为.公比为的等比数列. 的结论有.即. . . (3).又由(Ⅱ)有 . 则 ( ) = =( 1-)<∴ 对任意的.. 查看更多

 

题目列表(包括答案和解析)

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

已知数列满足(I)求数列的通项公式;

(II)若数列,前项和为,且证明:

【解析】第一问中,利用

∴数列{}是以首项a1+1,公比为2的等比数列,即 

第二问中, 

进一步得到得    即

是等差数列.

然后结合公式求解。

解:(I)  解法二、

∴数列{}是以首项a1+1,公比为2的等比数列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差数列.

     

 

查看答案和解析>>

解答题

已知等差数列的首项为a,公差为b;等比数列的首项为b,公比为a,其中a,b∈N+,且a1<b1<a2<b2<a3

(1)

a的值;

(2)

若对于任意n∈N+,总存在m∈N+,使am+3=bn,求b的值;

(3)

在(2)中,记{cn}是所有{an}中满足am+3=bn,m∈N+的项从小到大依次组成的数列,又记Sn为{cn}的前n项和,Tn是{an}的前n项和,求证:(n∈N+).

查看答案和解析>>

已知数列中,,数列中,,且点在直线上。

(1)求数列的通项公式;

(2)求数列的前项和

(3)若,求数列的前项和

【解析】第一问中利用数列的递推关系式

,因此得到数列的通项公式;

第二问中, 即为:

即数列是以的等差数列

得到其前n项和。

第三问中, 又   

,利用错位相减法得到。

解:(1)

  即数列是以为首项,2为公比的等比数列

                  ……4分

(2) 即为:

即数列是以的等差数列

         ……8分

(3) 又   

   ①         ②

①-  ②得到

  

 

查看答案和解析>>

已知数列的前n项和,数列 

(1)求的通项;

(2)若,求数列的前n项和

【解析】第一问中,利用当n=1时,

        当时,

得到通项公式

第二问中,∵   ∴∴数列  是以2为首项,2为公比的等比数列,利用错位相减法得到。

解:(1)当n=1时,                      ……………………1分

        当时, ……4分

        又

        ∴                            ……………………5分

(2)∵   ∴        

     ∴                 ……………………7分

     又∵    ∴ 

     ∴数列  是以2为首项,2为公比的等比数列,

     ∴                          ……………………9分

     ∴                        

     ∴     ①

          ②

     ①-②得:

 ∴

 

查看答案和解析>>


同步练习册答案