题目列表(包括答案和解析)
已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.
(1)求的解析式; (2)当,求的值域.
【解析】第一问利用三角函数的性质得到)由最低点为得A=2. 由x轴上相邻的两个交点之间的距离为得=,即,由点在图像上的
第二问中,
当=,即时,取得最大值2;当
即时,取得最小值-1,故的值域为[-1,2]
已知R.
(1)求函数的最大值,并指出此时的值.
(2)若,求的值.
【解析】本试题主要考查了三角函数的性质的运用。(1)中,三角函数先化简=,然后利用是,函数取得最大值(2)中,结合(1)中的结论,然后由
得,两边平方得即,因此
已知中,内角的对边的边长分别为,且
(I)求角的大小;
(II)若求的最小值.
【解析】第一问,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
第二问,
三角函数的性质运用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,,则当 ,即时,y的最小值为.
已知函数
(1)求的最小正周期;
(2)若,求的最大值、最小值及相应的x的值。
【解析】本试题主要是考查了三角函数的化简和变形,以及运用三角函数的性质求解最值问题的综合运用试题。
已知函数,
(1)设常数,若在区间上是增函数,求的取值范围;
(2)设集合,,若,求的取值范围.
【解析】本试题主要考查了三角函数的性质的运用以及集合关系的运用。
第一问中利用
利用函数的单调性得到,参数的取值范围。
第二问中,由于解得参数m的取值范围。
(1)由已知
又因为常数,若在区间上是增函数故参数
(2)因为集合,,若
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com