1.三角函数的性质:(结合图象理解, 表中)) y=sinx y=cosx y=tanx y=cotx 定义域 R R {x∈R|x≠kπ} 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇函数 偶函数 奇函数 奇函数 增区间 无 减区间 无 对称轴 x=kπ 无 对称 中心 (,0) 查看更多

 

题目列表(包括答案和解析)

已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.

(1)求的解析式;         (2)当,求的值域.    

【解析】第一问利用三角函数的性质得到)由最低点为得A=2. 由x轴上相邻的两个交点之间的距离为=,即由点在图像上的

第二问中,

=,即时,取得最大值2;当

时,取得最小值-1,故的值域为[-1,2]

 

查看答案和解析>>

已知R.

(1)求函数的最大值,并指出此时的值.

(2)若,求的值.

【解析】本试题主要考查了三角函数的性质的运用。(1)中,三角函数先化简=,然后利用是,函数取得最大值(2)中,结合(1)中的结论,然后由

,两边平方得,因此

 

查看答案和解析>>

已知中,内角的对边的边长分别为,且

(I)求角的大小;

(II)若的最小值.

【解析】第一问,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,

第二问,

三角函数的性质运用。

解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB, 

(Ⅱ)由(Ⅰ)可知 

,,则当 ,即时,y的最小值为

 

查看答案和解析>>

已知函数

(1)求的最小正周期;

(2)若,求的最大值、最小值及相应的x的值。

【解析】本试题主要是考查了三角函数的化简和变形,以及运用三角函数的性质求解最值问题的综合运用试题。

 

查看答案和解析>>

已知函数

(1)设常数,若在区间上是增函数,求的取值范围;

(2)设集合,若,求的取值范围.

【解析】本试题主要考查了三角函数的性质的运用以及集合关系的运用。

第一问中利用

利用函数的单调性得到,参数的取值范围。

第二问中,由于解得参数m的取值范围。

(1)由已知

又因为常数,若在区间上是增函数故参数 

 (2)因为集合,若

 

查看答案和解析>>


同步练习册答案