已知函数f.且对任意的正实数x.y都有.且当x>1时.f=1. =0, (2) 求, 在上为增函数, (4) 解不等式. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数f(x)=-x3+bx2+cx+bc

(1)若函数f(x)在x=1处有极值-,试确定bc的值;

(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;

(3)记g(x)=|fx)|(-1≤x≤1)的最大值为M,若M≥k对任意的bc恒成立,试求k的取值范围.

  (参考公式:x3-3bx2+4b3=(x+b)(x2b)2)

查看答案和解析>>

(本小题满分14分)
已知函数f(x)=-x3+bx2+cx+bc
(1)若函数f(x)在x=1处有极值-,试确定bc的值;
(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;
(3)记g(x)=|fx)|(-1≤x≤1)的最大值为M,若M≥k对任意的bc恒成立,试求k的取值范围.
(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2)

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>


同步练习册答案