当时.数列是以为首项.为公比的等比数列. 查看更多

 

题目列表(包括答案和解析)

时,.

是以为公比的等比数列,其首项为

已知数列中,,求数列的通项公式.

查看答案和解析>>

时,.
是以为公比的等比数列,其首项为
已知数列中,,求数列的通项公式.

查看答案和解析>>

已知﹛﹜是以为首项,q为公比的等比数列,为它的前项和.

(Ⅰ)当成等差数列时,求q的值;

(Ⅱ)当成等差数列时,求证:对任意自然数也成等差数列.

查看答案和解析>>

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>


同步练习册答案