精英家教网 > 高中数学 > 题目详情
已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.
(1)见解析(2)a=-(3)当a∈时,最小项为8a-1;当a=时,最小项为4a或8a-1;当a∈时,最小项为4a;当a=时,最小项为4a或2a+1;
当a∈时,最小项为2a+1.
(1)证明:∵bn=an+n2,∴bn+1=an+1+(n+1)2=2an+(n+1)2-4(n+1)+2+(n+1)2=2an+2n2=2bn(n≥2).
由a1=2a+1,得a2=4a,b2=a2+4=4a+4,∵a≠-1,
∴b2≠0,即{bn}从第2项起是以2为公比的等比数列.
(2)解:由(1)知bn
Sn=a+=-3a-4+(2a+2)2n,当n≥2时,
.
∵{Sn}是等比数列,∴ (n≥2)是常数,∴3a+4=0,即a=-.
(3)解:由(1)知当n≥2时,bn=(4a+4)2n-2=(a+1)2n
∴an
∴数列{an}为2a+1,4a,8a-1,16a,32a+7,…
显然最小项是前三项中的一项.
当a∈时,最小项为8a-1;当a=时,最小项为4a或8a-1;
当a∈时,最小项为4a;当a=时,最小项为4a或2a+1;
当a∈时,最小项为2a+1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列的各项均满足
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为,求证:对于任意的正数,总有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前n项的和为,且
(1)证明数列是等比数列
(2)求通项与前n项的和
(3)设若集合M=恰有4个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,3Sn=an-1(n∈N?).
(1)求a1,a2
(2)求证:数列{an}是等比数列;
(3)求an和Sn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设等比数列的前项和为,且,则
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两大超市同时开业,第一年的全年销售额均为a万元,由于经营方式不同,甲超市前n年的总销售额为(n2-n+2)万元,乙超市第n年的销售额比前一年销售额多a万元.
(1)设甲、乙两超市第n年的销售额分别为an、bn,求an、bn的表达式;
(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=3x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*,若数列{an}是等比数列,则实数t=   .

查看答案和解析>>

同步练习册答案