EF平面DEF----..6分所以AB//平面DEF-----..7分 查看更多

 

题目列表(包括答案和解析)

在直三棱柱ABC—A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b.

(1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;

(2)求证:A1C1⊥AB;

(3)求点B1到平面ABC1的距离.

查看答案和解析>>

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.

(I)判别MN与平面AEF的位置关系,并给出证明;

(II)求多面体E-AFMN的体积.

                 

【解析】第一问因翻折后B、C、D重合(如下图),所以MN应是的一条中位线,则利用线线平行得到线面平行。

第二问因为平面BEF,……………8分

,又 ∴

(1)因翻折后B、C、D重合(如图),

所以MN应是的一条中位线,………………3分

.………6分

(2)因为平面BEF,……………8分

,………………………………………10分

 ∴

 

查看答案和解析>>

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点
(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论;
(3)求DB与平面DEF所成角的正弦值.

查看答案和解析>>

如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E,F分别在线段AB,CD上,AB,CD所在直线异面,且AE:EB=CF:FD
(Ⅰ)求证:EF∥β;    
(Ⅱ)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.

查看答案和解析>>

(2013•泰安一模)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AB的中点.求证:
(I)直线EF∥平面PBC;
(Ⅱ)平面DEF⊥平面PAB.

查看答案和解析>>


同步练习册答案