(1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;
(2)求证:A1C1⊥AB;
(3)求点B1到平面ABC1的距离.
![]()
(1)证明:∵E、F分别为AB1、BC1的中点,
∴EF∥A1C1.
∵A1C1∥AC,
∴EF∥AC.
∴EF∥平面ABC.
(2)证明:∵AB=CC1,
∴AB=BB1.
又三棱柱为直三棱柱,
∴四边形ABB1A1为正方形.
连结A1B,则A1B⊥AB1.
又∵AB1⊥BC1,
∴AB1⊥平面A1BC1.
∴AB1⊥A1C1.
又A1C1⊥AA1,
∴A1C1⊥平面A1ABB1.
∴A1C1⊥AB.
(3)解:∵A1B1∥AB,
∴A1B1∥平面ABC1.
∴A1到平面ABC1的距离等于B1到平面ABC1的距离.
过A1作A1G⊥AC1于点G,
∵AB⊥平面ACC1A1,
∴AB⊥A1G.
从而A1G⊥平面ABC1,故A1G即为所求的距离,即A1G=![]()
.
讲评:本题(3)也可用等体积变换法求解.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com