题目列表(包括答案和解析)
(07年重庆卷理)(13分)
已知函数
(x>0),在x = 1处取得极值3c,其中a,b,c为常数。
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式
恒成立,求c的取值范围。
(06年广东卷)在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正三棱锥”形的展品,其中第一堆只有一层,就一个乒乓球;第2、3、4、…堆最底层(第一层)分别按图4所示方式固定摆放.从第一层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以
表示第n堆的乒乓球总数,则
;
(答案用n表示) .
![]()
(2012年高考广东卷理科20)(本小题满分14分)
在平面直角坐标系xOy中,已知椭圆C1:
的离心率e=
,且椭圆C上的点到Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由。
(08年广东卷理)(本小题满分12分)设
为实数,
是方程
的两个实根,数列
满足
,
,
(
…).
(1)证明:
,
;
(2)求数列
的通项公式;
(3)若
,
,求
的前
项和
.
(08年广东卷理)(本小题满分14分)
如图5所示,四棱锥
的底面
是半径为
的圆的内接四边形,其中
是圆的直径,
,
,
垂直底面
,
,
分别是
上的点,且
,过点
作
的平行线交
于
.
(1)求
与平面
所成角
的正弦值;
(2)证明:
是直角三角形;
(3)当
时,求
的面积.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com