已知曲线过上一点作一斜率为的直线交曲线于另一点.点列的横坐标构成数列.其中. 查看更多

 

题目列表(包括答案和解析)

已知曲线上一点作一斜率为的直线交曲线于另一点,点列的横坐标构成数列,其中
(I)求的关系式;
(II)令,求证:数列是等比数列;
(III)若(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立。

查看答案和解析>>

已知曲线上一点作一斜率为的直线交曲线于另一点,点列的横坐标构成数列,其中

(1)求的关系式;

(2)令,求证:数列是等比数列;

(3)若为非零整数,),试确定的值,使得对任意,都有成立。

查看答案和解析>>

(09年滨州一模理)(14分)

已知曲线上一点作一斜率为的直线交曲线于另一点,点列的横坐标构成数列,其中

(I)求的关系式;

(II)令,求证:数列是等比数列;

(III)若(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立。

查看答案和解析>>

已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率为kn=-
1
xn+2
的直线交曲线C于另一点An+1(xn+1,yn+1),点列An(n=1,2,3,…)的横坐标构成数列{xn},其中x1=
11
7

(1)求xn与xn+1的关系式;
(2)求证:{
1
xn-2
+
1
3
}是等比数列;
(3)求证:(-1)x1+(-1)2x2+(-1)3x3+…+(-1)nxn<1(n∈N,n≥1).

查看答案和解析>>

已知曲线C:xy=1,过C上一点A1(x1,y1)作斜率k1的直线,交曲线C于另一点A2(x2,y2),再过A2(x2,y2)作斜率为k2的直线,交曲线C于另一点A3(x3,y3),…,过An(xn,yn)作斜率为kn的直线,交曲线C于另一点An+1(xn+1,yn+1)…,其中x1=1,kn=-
xn+1
x
2
n
+4xn
(x∈N*)

(1)求xn+1与xn的关系式;
(2)判断xn与2的大小关系,并证明你的结论;
(3)求证:|x1-2|+|x2-2|+…+|xn-2|<2.

查看答案和解析>>

一、选择题(每小题5分,共计60分)

ABADD  CACAC  AB

二、填空题(每小题4分,共计16分)

(13)4;(14);(15);(16)①④.

三、解答题:

17.解:(本小题满分12分)

(Ⅰ) 由题意

   

          

          

    由题意,函数周期为3,又>0,

   (Ⅱ) 由(Ⅰ)知

      

      

又x的减区间是.

(18) (本小题满分12分)

解:(1)随机变量的所有可能取值为

所以随机变量的分布列为

0

1

2

3

4

5

   (2)∵随机变量

        ∴

19. (本小题满分12分)

解:(Ⅰ)∵   底面ABCD是正方形,

∴AB⊥BC,

又平面PBC⊥底面ABCD  

平面PBC ∩  平面ABCD=BC

∴AB  ⊥平面PBC

又PC平面PBC

∴AB  ⊥CP  ………………3分

(Ⅱ)解法一:体积法.由题意,面

 

中点,则

.

再取中点,则   ………………5分

设点到平面的距离为,则由

.                   ………………7分

解法二:

中点,再取中点

过点,则

中,

∴点到平面的距离为。  ………………7分

解法三:向量法(略)

(Ⅲ)

就是二面角的平面角.

∴二面角的大小为45°.   ………………12分

方法二:向量法(略).

(20)(本小题满分12分)

解:(Ⅰ)方法一:∵

.           

设直线

并设l与g(x)=x2相切于点M()

  ∴2

代入直线l方程解得p=1或p=3.

                             

方法二:  

将直线方程l代入

解得p=1或p=3 .                                      

(Ⅱ)∵,                                

①要使为单调增函数,须恒成立,

恒成立,即恒成立,

,所以当时,为单调增函数;   …………6分

②要使为单调减函数,须恒成立,

恒成立,即恒成立,

,所以当时,为单调减函数.                

综上,若为单调函数,则的取值范围为.………8分

 

(21) (本小题满分12分)

(1)∵直线的方向向量为

∴直线的斜率为,又∵直线过点

∴直线的方程为

,∴椭圆的焦点为直线轴的交点

∴椭圆的焦点为

,又∵

,∴

∴椭圆方程为  

(2)设直线MN的方程为

坐标分别为

   (1)    (2)        

>0

,

,显然,且

代入(1) (2),得

,得

,即

解得.

 (22) (本小题满分14分)

(1)  解:过的直线方程为

联立方程消去

(2)

是等比数列

  ,;

(III)由(II)知,,要使恒成立由=>0恒成立,

即(-1)nλ>-(n1恒成立.

?。当n为奇数时,即λ<(n1恒成立.

又(n1的最小值为1.∴λ<1.                                                              10分

?。当n为偶数时,即λ>-(n-1恒成立,

又-(n1的最大值为-,∴λ>-.                                                 11分

即-<λ<1,又λ≠0,λ为整数,

λ=-1,使得对任意n∈N*,都有                                                                                    


同步练习册答案