(A)1 (B)2 查看更多

 

题目列表(包括答案和解析)

||=

(A)2               (B)2       (C)    (D)1

查看答案和解析>>

19、下面(A),(B),(C),(D)为四个平面图形:
交点数 边数 区域数
(A) 4 5 2
(B)  5 8
(C) 12 5
(D) 15
(1)数出每个平面图形的交点数、边数、区域数,并将相应结果填入表格;
(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E,F,G,试猜想E,F,G之间的等量关系(不要求证明);
(3)现已知某个平面图形有2010个交点,且围成2010个区域,试根据以上关系确定该平面图形的边数.

查看答案和解析>>

精英家教网(A)(不等式选讲)不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是
 

(B) (几何证明选讲)如图,已知在△ABC中,∠C=90°,正方形DEFC內接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则正方形DEFC的边长等于
 

(C) (极坐标系与参数方程)曲线ρ=2sinθ与ρ=2cosθ相交于A,B两点,则直线AB的方程为
 

查看答案和解析>>

(A)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2θ=
π4
,若曲线C1与C2交于A、B两点,则线段AB=
 

(B)若|x-1|+x-2||+|x-3|≥m恒成立,则m的取值范围为
 

查看答案和解析>>

(A)(几何证明选讲选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,则BD的长为=
16
5
16
5

(B)(不等式选讲选做题)关于x的不等式|x-1|+|x-2|≤a2+a+1的解集为空集,则实数a的取值范围是
(-1,0)
(-1,0)

(C)(坐标系与参数方程选做题)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为
x=3cosθ
y=sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
3
)=6
.点P在曲线C上,则点P到直线l的距离的最小值为
6-
3
6-
3

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空题:本大题共4个小题,每小题4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.

 

17.解:(Ⅰ)∵l1∥l2

,????????????????????????? 3分

.??????????????????????? 6分

(Ⅱ)∵

,∴,当且仅当时取"=".??? 8分

,∴,???????????? 10分

,当且仅当时取"=".

故△ABC面积取最大值为.?????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率;??????????? 1分

②三次取球中有2次出现最大数字3的概率;????? 3分

③三次取球中仅有1次出现最大数字3的概率.????? 5分

∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

(Ⅱ)在ξ=k时, 利用(Ⅰ)的原理可知:

(k=1、2、3、4).?? 8分

则ξ的概率分布列为:

ξ

1

2

3

4

P

??????????????????????????????????? 10分

∴ξ的数学期望Eξ=1×+2×+3×+4× = .????????? 12分

 

19.(Ⅰ)证明:∵四边形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等边三角形,设O是AA1的中点,连接BO,则BO⊥AA1 2分

∵侧面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面积为,知C到AA1的距离为,∴△AA1C1是等边三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB两两垂直,以O为原点,建立如图空间直角坐标系,则.则.??????????????????????????? 5分

是平面ABC的一个法向量,

,则.设A1到平面ABC的距离为d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一个法向量是,又平面ACC1的一个法向量.    9分

.????????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ),对称轴方程为,故函数在[0,1]上为增函数,∴.???????????????????????? 2分

时,.?????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????? 4分

,∴数列是以为首项,为公比的等比数列.

,∴.?????????????? 6分

(Ⅱ)∵,∴

???????????????? 7分

可知:当时,;当时,;当时,

????????????????????? 10分

可知存在正整数或6,使得对于任意的正整数n,都有成立.??? 12分

 

21.解:(Ⅰ)设

.∵

,∴,∴.?????????????????? 2分

则N(c,0),M(0,c),所以

,则

∴椭圆的方程为.?????????????????????? 4分

(Ⅱ)∵圆O与直线l相切,则,即,????????? 5分

消去y得

∵直线l与椭圆交于两个不同点,设

,?????????????????? 7分

.????? 8分

.??????????? 9分

(或).

,则

,则

时单调递增,????????????????????? 11分

∴S关于μ在区间单调递增,

.???????????????????????????? 12分

(或

∴S关于u在区间单调递增,???????????????????? 11分

.)???????????????? 12分

 

22.解:(Ⅰ)因为,则,   1分

时,;当时,

上单调递增;在上单调递减,

∴函数处取得极大值.???????????????????? 2分

∵函数在区间(其中)上存在极值,

解得.??????????????????????? 3分

(Ⅱ)不等式,即为,???????????? 4分

,∴,?? 5分

,则,∵,∴上递增,

,从而,故上也单调递增,

.??????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

,??????????????? 9分

………

,??????????????????????? 10分

叠加得:

.???????????????????? 12分

.???????????????????? 14


同步练习册答案