5.实施“定义域优先 原则.函数的定义域是函数最基本的组成部分.任何对函数性质的研究都离不开函数的定义域.例如.求函数的单调区间.必须在定义域范围内,通过求出反函数的定义域.可得到原函数的值域,定义域关于原点对称.是函数为奇函数或偶函数的必要条件.为此.应熟练掌握求函数定义域的原则与方法.并贯彻到解题中去. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)在定义域内是递减函数,且f(x)<0恒成立,给出下列函数:①y=-5+f(x);②y=
-f(x)
;③y=5-
1
f(x)
;④y=[f(x)]2;其中在其定义域内单调递增的函数的序号是
②④
②④

查看答案和解析>>

一个盒子中装有4张卡片,上面分别写着如下四个定义域为R的函数:f1(x)=x3,f2(x)=|x|,f3(x)=sinx,f4(x)=cosx现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是
2
3
2
3

查看答案和解析>>

(2013•广东)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是(  )

查看答案和解析>>

(2009•卢湾区一模)将奇函数的图象关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:
①函数y=f(x)满足f(a+x)+f(a-x)=2b的充要条件是y=f(x)的图象关于点(a,b)成中心对称.
②函数y=f(x)满足F(x)=f(x+a)-f(a)为奇函数的充要条件是y=f(x)的图象关于点(a,f(a))成中心对称(注:若a不属于x的定义域时,则f(a)不存在).
利用上述结论完成下列各题:
(1)写出函数f(x)=tanx的图象的对称中心的坐标,并加以证明.
(2)已知m(m≠-1)为实数,试问函数f(x)=
x+m
x-1
的图象是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.
(3)若函数f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的图象关于点(
2
3
,f(
2
3
))
成中心对称,求t的值.

查看答案和解析>>

设函数f(x)的定义域为R,若存在常数k>0,使|f(x)|≤
k|x|
2013
对于一切x∈R均成立,则称f(x)为“好运”函数.给出下列函数:
①f(x)=x2; 
②f(x)=sinx+cosx;
f(x)=
x
x2+x+1
;     
④f(x)=3x+1.
其中f(x)是“好运”函数的序号是(  )

查看答案和解析>>


同步练习册答案