在一个特定时段内.以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B.经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C. (I)求该船的行驶速度;(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域.并说明理由.教材(P126.问题)及08年湖南高考理科19题 解:(1)如图建立平面直角坐标系:设一个单位为10海里 则坐标平面中AB = 10.AC = 2 A 再由方位角可求得:B 所以|BC| = = 2 所以BC两地的距离为20海里 所以该船行驶的速度为10海里/小时 (2)直线BC的斜率为 = 2 所以直线BC的方程为:y- = 2(x-3) 即2x-y-5 =0 所以E点到直线BC的距离为 = < 1 所以直线BC会与以E为圆心.以一个单位长为半径的圆相交.所以若该船不改变航行方向则会进入警戒水域.答:该船行驶的速度为10海里/小时.若该船不改变航行方向则会进入警戒水域. 查看更多

 

题目列表(包括答案和解析)

(本小题满分9分)

在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C.

(I)求该船的行驶速度(单位:海里/小时);

(II)若该船不改变航行方向继续行驶.判断

它是否会进入警戒水域,并说明理由.

 

查看答案和解析>>

(本小题满分9分)
在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断
它是否会进入警戒水域,并说明理由.

查看答案和解析>>

(本小题满分9分)
在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断
它是否会进入警戒水域,并说明理由.

查看答案和解析>>

(本小题满分13分)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中均为常数,且

(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)

(2)若,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推);

(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.

 

查看答案和解析>>

(本小题满分13分)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①;②;③.(以上三式中均为常数,且
(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)
(2)若,求出所选函数的解析式(注:函数定义域是.其中表示8月1日,表示9月1日,…,以此类推);
(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.

查看答案和解析>>


同步练习册答案