(1)当时.求函数满足时的的集合, 查看更多

 

题目列表(包括答案和解析)

集合Mk(k≥0)是满足下列条件的函数f(x)全体:如果对于任意的x1,x2∈(k,+∞),都有f(x1)+f(x2)>f(x1+x2).
(1)函数f(x)=x2是否为集合M0的元素,说明理由;
(2)求证:当0<a<1时,函数f(x)=ax是集合M1的元素;
(3)对数函数f(x)=lgx∈Mk,求k的取值范围.

查看答案和解析>>

集合A是由适合以下性质的函数f(x)构成的:对于任意的,且u、υ∈(-1,1),都有|f(u)-f(υ)|≤3|u-υ|.
(1)判断函数f1(x)=
1+x2
是否在集合A中?并说明理由;
(2)设函数f(x)=ax2+bx,且f(x)∈A,试求2a+b的取值范围;
(3)在(2)的条件下,若f(2)=6,且对于满足(2)的每个实数a,存在最小的实数m,使得当x∈[m,2]时,|f(x)|≤6恒成立,试求用a表示m的表达式.

查看答案和解析>>

已知函数满足,其中, 

 (1)对于函数,当时,,求实数的集合; 

 (2)当时,的值恒为负数,求的取值范围.

查看答案和解析>>

已知函数满足,当的最大值为

(1)求时函数的解析式;

(2)是否存在实数使得不等式对于若存在,求出实数 的取值集合,若不存在,说明理由.

查看答案和解析>>

已知函数满足,其中a>0,a≠1.

(1)对于函数,当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;

(2)当x∈(-∞,2)时,的值为负数,求的取值范围。

 

查看答案和解析>>


同步练习册答案