所以的面积.?????????????????????????????????????????????????????????????? 12分 查看更多

 

题目列表(包括答案和解析)

(2007•上海模拟)(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为arccos
79
,周长为定值p,求面积S的最大值;
(3)为了研究边长a,b,c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(a+b)2-c2][c2-(a-b)2]=-c4+2(a2+b2)c2-(a2-b22=-[c2-(a2+b2)]2+4a2b2
而-[c2-(a2+b2)]2≤0,a2≤81,b2≤64,则S≤36,但是,其中等号成立的条件是c2=a2+b2,a=9,b=8,于是c2=145与3≤c≤4矛盾,所以,此三角形的面积不存在最大值.
以上解答是否正确?若不正确,请你给出正确的答案.
(注:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)称为三角形面积的海伦公式,它已经被证明是正确的)

查看答案和解析>>

利用计算机随机模拟方法计算图中阴影面积(如图所示)
第一步:利用计算机产生两个0~1区间的均匀随机数,x,y,其中-1<x<1,0<y<1;
第二步:拟(x,y)为点的坐标.共做此实验N次.若落在阴影部分的点的个数为N1
则可以计算阴影部分的面积S.例如:做了2000次实验,即N=2000,模拟得到N1=1396,所以S=
1.396
1.396

查看答案和解析>>

如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内装进一些水,将容器底面一边BC固定于底面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:①水的形状始终是棱柱形状;②水面形成的四边形EFGH的面积不改变;③当E∈AA1时,AE+BF是定值.其中正确说法是
①③
①③
.(写出所以正确说法的序号)

查看答案和解析>>

已知直线l:x-y+3=0,一束光线从点A(1,2)处射向x轴上一点B,又从B点反射到l上一点C,最后又从C点反射回A点.
(Ⅰ)试判断由此得到的△ABC是有限个还是无限个?
(Ⅱ)依你的判断,认为是无限个时求出所以这样的△ABC的面积中的最小值;认为是有限个时求出这样的线段BC的方程.

查看答案和解析>>

 [番茄花园1] (本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足

(Ⅰ)求角C的大小;

(Ⅱ)求的最大值。

 (Ⅰ)解:由题意可知

absinC=,2abcosC.

所以tanC=.

因为0<C<

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

当△ABC为正三角形时取等号,

所以sinA+sinB的最大值是.

 

 


 [番茄花园1]1.

查看答案和解析>>


同步练习册答案