因为⊥平面PQEF.又已知与平面PQEF成角. 查看更多

 

题目列表(包括答案和解析)

(2012•海淀区二模)曲线C是平面内到定点A(1,0)的距离与到定直线x=-1的距离之和为3的动点P的轨迹.则曲线C与y轴交点的坐标是
(0,±
3
)
(0,±
3
)
;又已知点B(a,1)(a为常数),那么|PB|+|PA|的最小值d(a)=
a2-2a+2
,a≤-1.4或a≥1
a+4,-1.4<a≤-1
2-a,-1<a<1.
a2-2a+2
,a≤-1.4或a≥1
a+4,-1.4<a≤-1
2-a,-1<a<1.

查看答案和解析>>

(2012•静安区一模)如图,在四棱锥P-ABCD的底面梯形ABCD中,AD∥BC,AB⊥BC,AB=1,AD=3,∠ADC=45°.又已知PA⊥平面ABCD,PA=1.
求:
(1)异面直线PD与AC所成角的大小.(结果用反三角函数值表示)
(2)四棱锥P-ABCD的体积.

查看答案和解析>>

已知平面上两定点C(-1,0),D(1,0)和一定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)问点P在什么曲线上,并求出曲线的轨迹方程M;
(2)又已知点A为抛物线y2=2px(p>0)上一点,直线DA与曲线M的交点B不在y轴的右侧,且点B不在x轴上,并满足
AB
=2
DA
,求p
的最小值.

查看答案和解析>>

已知平面上两定点C1,0),D(1,0)和一定直线为该平面上一动点,作,垂足为Q,且

   (1)问点在什么曲线上,并求出曲线的轨迹方程M

   (2)又已知点A为抛物线上一点,直线DA与曲线M的交点B不在 轴的右侧,且点B不在轴上,并满足的最小值.[来源:学

 

查看答案和解析>>

如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求证:EM∥平面ABC;

(2)试问在棱DC上是否存在点N,使NM⊥平面? 若存在,确定

点N的位置;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案