只需 (恒成立. 查看更多

 

题目列表(包括答案和解析)

下列命题中(1)若,则f(x+π)=f(x)对?x∈R恒成立.
(2)△ABC中,A>B是sinA>sinB的充要条件.
(3)若为非零向量,且,则
(4)要得到函数的图象,只需将函数的图象向右平移个单位,其中真命题的有   

查看答案和解析>>

下列命题中(1)若f(x)=2cos2
x
2
-1
,则f(x+π)=f(x)对?x∈R恒成立.
(2)△ABC中,A>B是sinA>sinB的充要条件.
(3)若
a
b
c
为非零向量,且
a
b
=
a
c
,则
b
=
c

(4)要得到函数y=sin
x
2
的图象,只需将函数y=sin(
x
2
-
π
4
)
的图象向右平移
π
2
个单位,其中真命题的有
 

查看答案和解析>>

下列命题中(1)若f(x)=2cos2
x
2
-1
,则f(x+π)=f(x)对?x∈R恒成立.
(2)△ABC中,A>B是sinA>sinB的充要条件.
(3)若
a
b
c
为非零向量,且
a
b
=
a
c
,则
b
=
c

(4)要得到函数y=sin
x
2
的图象,只需将函数y=sin(
x
2
-
π
4
)
的图象向右平移
π
2
个单位,其中真命题的有______.

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

 已知函数

(1)若关于的方程只有一个实数解,求实数的取值范围;

(2)若当时,不等式恒成立,求实数的取值范围;

(3)探究函数在区间上的最大值(直接写出结果,不需给出演算步骤).

 

查看答案和解析>>


同步练习册答案