(2)求以.为焦点且过点的椭圆的方程, 查看更多

 

题目列表(包括答案和解析)

椭圆的中心为原点O,离心率e=
12
,过右焦点F的直线l交椭圆于P、Q两点,且椭圆经过点点A(2,0)
(Ⅰ)求椭圆的方程;
(Ⅱ)当直线l的斜率为1时,求△POQ的面积.
(Ⅲ)若以OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

已知椭圆的方程为,其右焦点为F,A1、A2为椭圆的左右顶点,双曲线的顶点与椭圆的左右顶点重合,其渐近线过原点且与以点F为圆心长为半径的圆相切.

(Ⅰ)求双曲线的方程;

(Ⅱ)是否存在过点F的直线,使l被椭圆截得的弦长等于l被双曲线截得的弦长,若存在,求出所有l的方程,若不存在说明理由.

查看答案和解析>>

精英家教网椭圆
x2
a2
+
y2
b2
=1(a>b>0)
一短轴顶点与两焦点的连接组成正三角形,且焦点到对应准线的距离等于3.过以原点为圆心,半焦距为半径的圆上任意一点P作该圆的切线l,且l与椭圆交于A、B两点.
(1)求椭圆的方程;
(2)求
OA
OB
的取值范围.

查看答案和解析>>

椭圆中心在原点,焦点在x轴上,离心率为
2
2
,椭圆右准线与x轴交于E(2,0).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若M(2,t)(t>0),直线x+2y-10=0上有且仅有一点P使
PO
PM
=0
.求以OM为直径的圆的方程;
(Ⅲ)设椭圆左、右焦点分别为F1,F2,过E点作不与y轴垂直的直线l与椭圆交于A,B两个不同的点(B在E,A之间)若有
F1A
F2B
,求此时直线l的方程.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,P为椭圆C上任意一点.已知
PF1
PF2
的最大值为3,最小值为2.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于M、N两点(M、N不是左右顶点),且以MN为直径的圆过点A.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

 

一、填空题

1.; 2.;3.; 4.;5. 11; 6.210; 7.16; 8.③; 9.; 10.; 11.; 12.; 13.;  14.(结果为不扣分).

二、解答题

15.(本小题满分14分)

解:(1)50;0.04;0.10. ………… 6分

       (2)如图.      ……………… 10分

       (3)在随机抽取的名同学中有

出线,.        ………… 13分

答:在参加的名中大概有63名同学出线.      

   ………………… 14分

 

16.(本小题满分14分)

解:真,则有,即.              ------------------4分

真,则有,即.    ----------------9分

中有且只有一个为真命题,则一真一假.

①若真、假,则,且,即; ----------------11分

②若假、真,则,且,即3≤.  ----------------13分

故所求范围为:或3≤.                        -----------------14分

 

 

 

 

17.(本小题满分15分)

解:(1)设方程有实根为事件

数对共有对.                                   ------------------2分

若方程有实根,则,即.                 -----------------4分

则使方程有实根的数对对.                                                        ------------------6分

所以方程有实根的概率.                          ------------------8分

(2)设方程有实根为事件

,所以.           ------------------10分

方程有实根对应区域为. -------------------12分

所以方程有实根的概率.                       ------------------15分

18.(本小题满分15分)

解:(1)  ∴………………4分

(2)过的切线斜率

∴切线方程为

 准线方程为. …………………8分

.∴. ………………………………12分

单调递增,∴.                     

的取值范围是-.             ………………………………15分

19.(本小题满分16分)

解:(1)设关于l的对称点为,则,解得,即,故直线的方程为.由,解得.                   ------------------------5分

(2)因为,根据椭圆定义,得

,所以.又,所以.所以椭圆的方程为.                                     ------------------------10分

(3)假设存在两定点为,使得对于椭圆上任意一点(除长轴两端点)都有为定值),即?,将代入并整理得…(*).

由题意,(*)式对任意恒成立,所以

解之得

所以有且只有两定点,使得为定值.   ---------------16分

(注:若猜出点为长轴两端点并求出定值,给3分)

20.(本小题满分16分)

解:(1).                       ------------------------2分

因为,令;令.所以函数的增区间为,减区间为.                                  ------------------------5分

(2)因为,设,则.----------6分

设切点为,则切线的斜率为,切线方程为,由点在切线上知,化简得,即

所以仅可作一条切线,方程是.              ------------------------9分

(3).                   

上恒成立上的最小值.--------------11分

①当时,上单调递减,上最小值为,不符合题意,故舍去;               ------------------------12分

②当时,令

时,即时,函数在上递增,的最小值为;解得.                                       ------------------------13分

时,即时,函数在上递减,的最小值为,无解;                                                -----------------------14分

时,即时,函数在上递减、在上递增,所以的最小值为,无解.                ------------------------15分

综上,所求的取值范围为.                     ------------------------16分

 

 

 

 


同步练习册答案