题目列表(包括答案和解析)
设函数f(x)=ax
+bx+1(a,b为实数),F(x)=![]()
(1)若f(-1)=0且对任意实数x均有f(x)
成立,求F(x)表达式。
(2)在(1)的条件下,当x
时,g(x)=f(x)-kx是单调函数,求实数k的取值范围。
(3)(理)设m>0,n<0且m+n>0,a>0且f(x)为偶函数,求证:F(m)+F(n)>0。
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
![]()
【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力 第一问要利用相似比得到结论。
(I)由SAMPN > 32 得
> 32 ,
∵x >2,∴
,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+
)
第二问,
当且仅当![]()
(3)令![]()
∴当x
> 4,y′> 0,即函数y=
在(4,+∞)上单调递增,∴函数y=
在[6,+∞]上也单调递增.
∴当x=6时y=
取得最小值,即SAMPN取得最小值27(平方米).
已知a<b<0,奇函数f(x)的定义域为[a,-a],在区间[-b,-a]上单调递减且f(x)>0,则在区间[a,b]上( )
A.f (x)>0且| f (x)|单调递减 B.f (x)>0且| f (x)|单调递增
C.f (x)<0且| f (x)|单调递减 D.f (x)<0且| f (x)|单调递增
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)(x∈R)的部分图象如图所示.
![]()
(1)求f(x)的表达式;
(2)设g(x)=f(x)-f,求函数g(x)的最小值及相应的x的取值集合.
已知f(x)=
(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com