12.
解:(1)如图:
,
;(2) (b,a) ;
(3)由(2)得,D(1,-3) 关于直线l的对称点
的坐标为(-3,1),连接
E交直线l于点Q,此时点Q到D、E两点的距离之和最小
设过
(-3,1) 、E(-1,-4)的设直线的解析式为
,则
,∴
,∴
.由
得
,∴所求Q点的坐标为(
,
)
11. 解:由图象可知,点
在直线
上,
.解得
.
直线的解析式为
.令
,可得
.
直线与
轴的交点坐标为
.令
,可得
.
直线与
轴的交点坐标为
.
10. 解:(1)由直角三角形纸板的两直角边的长为1和2,
知
两点的坐标分别为
.
设直线
所对应的函数关系式为
.···························································· 2分
有
解得![]()
所以,直线
所对应的函数关系式为
.····················································· 4分
(2)①点
到
轴距离
与线段
的长总相等.
因为点
的坐标为
,
所以,直线
所对应的函数关系式为
.
又因为点
在直线
上,
所以可设点
的坐标为
.
过点
作
轴的垂线,设垂足为点
,则有
.
因为点
在直线
上,所以有
.······················· 6分
因为纸板为平行移动,故有
,即
.
又
,所以
.
法一:故
,
从而有
.
得
,
.
所以
.
又有
.························································ 8分
所以
,得
,而
,
从而总有
.····································································································· 10分
法二:故
,可得
.
故
.
所以
.
故
点坐标为
.
设直线
所对应的函数关系式为
,
则有
解得![]()
所以,直线
所对的函数关系式为
.·············································· 8分
将点
的坐标代入,可得
.解得
.
而
,从而总有
.························································· 10分
②由①知,点
的坐标为
,点
的坐标为
.
![]()
![]()
.····································································· 12分
当
时,
有最大值,最大值为
.
取最大值时点
的坐标为
. 14分
9.
解:(1)
······························· (3分)
(2)由题意,可得:
.
.·········································································································· (5分)
当
时,
.
造这片林的总费用需45 000元.········································································· (8分)
8.
解:(1)
;
(2)
,![]()
(天)
答:乙队单独完成这项工程要60天.
(3)
(天)
答:图中
的值是28.
7. 解:(1)设
与
之间的关系为一次函数,其函数表达式为
··················· 1分
将
,
代入上式得,
解得![]()
········································································································· 4分
验证:当
时,
,符合一次函数;
当
时,
,也符合一次函数.
可用一次函数
表示其变化规律,
而不用反比例函数、二次函数表示其变化规律.···························································· 5分
与
之间的关系是一次函数,其函数表达式为
································ 6分
(2)当
时,由
可得![]()
即货车行驶到
处时油箱内余油16升.········································································ 8分
(3)方法不唯一,如:
方法一:由(1)得,货车行驶中每小时耗油20升,····················································· 9分
设在
处至少加油
升,货车才能到达
地.
依题意得,
,···························································· 11分
解得,
(升)··································································································· 12分
方法二:由(1)得,货车行驶中每小时耗油20升,····················································· 9分
汽车行驶18千米的耗油量:
(升)
之间路程为:
(千米)
汽车行驶282千米的耗油量:
(升)······························································································· 11分
(升)················································································ 12分
方法三:由(1)得,货车行驶中每小时耗油20升,····················································· 9分
设在
处加油
升,货车才能到达
地.
依题意得,
,
解得,
············································································································· 11分
在
处至少加油
升,货车才能到达
地.·························································· 12分
6. 解:(1)
特征数为
的一次函数为
,
,
.
(2)
抛物线与
轴的交点为
,
与
轴的交点为
.
若
,则
,
;
若
,则
,
.
当
时,满足题设条件.
此时抛物线为
.
它与
轴的交点为
,
与
轴的交点为
,
一次函数为
或
,
特征数为
或
.
5. 解⑴y=(63-55)x+(40-35)(500-x)……………3分
=2x+2500。即y=2x+2500(0≤x≤500),………………4分
⑵由题意,得55x+35(500-x)≤20000,………………6分
解这个不等式,得x≤125,………………………………7分
∴当x=125时,y最大值=3×12+2500=2875(元),…………9分
∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.………………………………………………………………10分
4. 解:设这个一次函数的解析式为y=kx+b.
则
解得
,函数的解析式为y=-2x+3.
由题意,得
得
,所以使函数为正值的x的范围为![]()
3. 解:(1)
,所以不能在60天内售完这些椪柑,
(千克)
即60天后还有库存5000千克,总毛利润为
W=
;
(2)![]()
要在2月份售完这些椪柑,售价x必须满足不等式
![]()
解得![]()
所以要在2月份售完这些椪柑,销售价最高可定为1.4元/千克。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com