0  428481  428489  428495  428499  428505  428507  428511  428517  428519  428525  428531  428535  428537  428541  428547  428549  428555  428559  428561  428565  428567  428571  428573  428575  428576  428577  428579  428580  428581  428583  428585  428589  428591  428595  428597  428601  428607  428609  428615  428619  428621  428625  428631  428637  428639  428645  428649  428651  428657  428661  428667  428675  447090 

12. 解:(1)如图:;(2)  (ba) ;

(3)由(2)得,D(1,-3) 关于直线l的对称点的坐标为(-3,1),连接E交直线l于点Q,此时点QDE两点的距离之和最小 

设过(-3,1) E(-1,-4)的设直线的解析式为,则

,∴,∴.由 ,∴所求Q点的坐标为()

试题详情

11. 解:由图象可知,点在直线上,.解得直线的解析式为.令,可得直线与轴的交点坐标为.令,可得直线与轴的交点坐标为

试题详情

10. 解:(1)由直角三角形纸板的两直角边的长为1和2,

两点的坐标分别为

设直线所对应的函数关系式为.···························································· 2分

解得

所以,直线所对应的函数关系式为.····················································· 4分

(2)①点轴距离与线段的长总相等.

因为点的坐标为

所以,直线所对应的函数关系式为

又因为点在直线上,

所以可设点的坐标为

过点轴的垂线,设垂足为点,则有

因为点在直线上,所以有.······················· 6分

因为纸板为平行移动,故有,即

,所以

法一:故

从而有

所以

又有.························································ 8分

所以,得,而

从而总有.····································································································· 10分

法二:故,可得

所以

点坐标为

设直线所对应的函数关系式为

则有解得

所以,直线所对的函数关系式为.·············································· 8分

将点的坐标代入,可得.解得

,从而总有.························································· 10分

②由①知,点的坐标为,点的坐标为

.····································································· 12分

时,有最大值,最大值为

取最大值时点的坐标为.   14分

试题详情

9.

解:(1)······························· (3分)

(2)由题意,可得:

.·········································································································· (5分)

时,

造这片林的总费用需45 000元.········································································· (8分)

试题详情

8.

解:(1)

(2)

(天)

答:乙队单独完成这项工程要60天.

(3)(天)

答:图中的值是28.

试题详情

7. 解:(1)设之间的关系为一次函数,其函数表达式为··················· 1分

代入上式得,

  解得

········································································································· 4分

验证:当时,,符合一次函数;

时,,也符合一次函数.

可用一次函数表示其变化规律,

而不用反比例函数、二次函数表示其变化规律.···························································· 5分

之间的关系是一次函数,其函数表达式为································ 6分

(2)当时,由可得

即货车行驶到处时油箱内余油16升.········································································ 8分

(3)方法不唯一,如:

方法一:由(1)得,货车行驶中每小时耗油20升,····················································· 9分

设在处至少加油升,货车才能到达地.

依题意得,,···························································· 11分

解得,(升)··································································································· 12分

方法二:由(1)得,货车行驶中每小时耗油20升,····················································· 9分

汽车行驶18千米的耗油量:(升)

之间路程为:(千米)

汽车行驶282千米的耗油量:

(升)······························································································· 11分

(升)················································································ 12分

方法三:由(1)得,货车行驶中每小时耗油20升,····················································· 9分

设在处加油升,货车才能到达地.

依题意得,

解得,············································································································· 11分

处至少加油升,货车才能到达地.·························································· 12分

试题详情

6. 解:(1)特征数为的一次函数为

(2)抛物线与轴的交点为

轴的交点为

,则

,则

时,满足题设条件.

此时抛物线为

它与轴的交点为

轴的交点为

一次函数为

特征数为

试题详情

5. 解⑴y=(63-55)x+(40-35)(500-x)……………3分

=2x+2500。即y=2x+2500(0≤x≤500),………………4分

⑵由题意,得55x+35(500-x)≤20000,………………6分

解这个不等式,得x≤125,………………………………7分

∴当x=125时,y最大值=3×12+2500=2875(元),…………9分

∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.………………………………………………………………10分

试题详情

4. 解:设这个一次函数的解析式为y=kx+b.

解得,函数的解析式为y=-2x+3.

由题意,得,所以使函数为正值的x的范围为

试题详情

3. 解:(1),所以不能在60天内售完这些椪柑,

    (千克)

    即60天后还有库存5000千克,总毛利润为

    W=

  (2)

   要在2月份售完这些椪柑,售价x必须满足不等式

  

   解得

   所以要在2月份售完这些椪柑,销售价最高可定为1.4元/千克。

试题详情


同步练习册答案