0  430531  430539  430545  430549  430555  430557  430561  430567  430569  430575  430581  430585  430587  430591  430597  430599  430605  430609  430611  430615  430617  430621  430623  430625  430626  430627  430629  430630  430631  430633  430635  430639  430641  430645  430647  430651  430657  430659  430665  430669  430671  430675  430681  430687  430689  430695  430699  430701  430707  430711  430717  430725  447090 

1.这些角是对点、直线、平面所组成空间图形的位置进行定性分析和定量计算的重要组成部分,学习时要深刻理解它们的含义,并能综合应用空间各种角的概念和平面几何知识(特别是余弦定理)熟练解题。特别注意:空间各种角的计算都要转化为同一平面上来,这里要特别注意平面角的探求;

试题详情

题型1:异面直线所成的角

例1.(1)直三棱住A1B1C1-ABC,∠BCA=,点D1、F1 分别是A1B1、A1C1的中点,BC=CA=CC1,则BD1与AF1所成角的余弦值是(  ) 

  (A )  (B)  (C) (D)

(2)(06四川)已知二面角的大小为为异面直线,且,则所成的角为(  )

(A)     (B)       (C)      (D)

解析:(1)连结D1F1,则D1F1

∵BC  ∴D1F1

设点E为BC中点,∴D1F1BE,∴BD1∥EF1,∴∠EF1A或其补角即为BD1与AF1所成的角。由余弦定理可求得。故选A。

(2)二面角的大小为为异面直线,且,则所成的角为两条直线所成的角,∴ θ=,选B。

点评:通过平移将异面直线的夹角转化为平面内的两条相交直线的夹角。

例2.已知正方体ABCDA1B1C1D1的棱长为2,点E为棱AB的中点。

求:D1E与平面BC1D所成角的大小(用余弦值表示)

解析:建立坐标系如图,

不难证明为平面BC1D的法向量,

∴  D1E与平面BC1D所成的角的余弦值为

点评:将异面直线间的夹角转化为空间向量的夹角。

题型2:直线与平面所成的角

例3.PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为,那么直线PC与平面PAB所成角的余弦值是(  )

A.        B.        C.        D.

解:构造正方体如图所示,过点C作CO⊥平面PAB,垂足为O,则O为正ΔABP的中心,于是∠CPO为PC与平面PAB所成的角。设PC=a,则PO=,故,即选C。

思维点拨:第(2)题也可利用公式直接求得。

例2.(03年高考试题)如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA1=2,DE分别是CC1A1B的中点,点E在平面ABD上的射影是△ABD的重心G。求A1B与平面ABD所成角的大小(结果用余弦值表示);

解析:如图所示,建立坐标系,坐标原点为C,设CA=2a,则A(2a,0,0),B(0,2a,0),D(0,0,1),A1(2a,0,2),E(aa,1), G() ,

a=1,

为平面ABD的法向量,且

A1B与平面ABD所成角的余弦值是

点评:先处理平面的法向量,再求直线的方向向量与法向量夹角间的夹角转化为线面角。

题型3:二面角

例5.在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA=AB=a,E为BC中点。

(1)求平面PDE与平面PAB所成二面角的大小(用正切值表示);

(2)求平面PBA与平面PDC所成二面角的大小。

解析:(1)延长AB、DE交于点F,则PF为平面PDE与平面PAD所成二面角的棱,∵PA⊥平面ABCD,∴AD⊥PA、AB, PA∩AB=A∴DA⊥平面BPA于A,

过A作AO⊥PF于O,连结OD,则∠AOD即为平面PDE与平面PAD所成二面角的平面角。易得,故平面PDE与平PAD所成二面角的正切值为

(2)解法1(面积法)如图∵AD⊥PA、AB, PA∩AB=A,

∴DA⊥平面BPA于A, 同时,BC⊥平面BPA于B,

∴△PBA是△PCD在平面PBA上的射影, 设平面PBA与平面PDC所成二面角大小为θ, cosθ=SPAB/SPCD=/2 θ=450

即平面BAP与平面PDC所成的二面角的大小为45°。 

解法2(补形化为定义法)

如图:将四棱锥P-ABCD补形得正方体ABCD-PQMN,则PQ⊥PA、PD,于是∠APD是两面所成二面角的平面角。

在Rt△PAD中,PA=AD,则∠APD=45°。即平面BAP与平面PDC所成二面角的大小为45°。

例6.(1)(2003年,北京卷高考题)如图6,正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且。求二面角的大小。(略去了该题的①,③问)

(2)(06四川卷)已知球的半径是1,三点都在球面上,两点和两点的球面距离都是两点的球面距离是,则二面角的大小是(   )

(A)       (B)      (C)       (D)

解析:(1)取BC的中点O,连AO。

由题意:平面平面,∴平面

以O为原点,建立如图6所示空间直角坐标系,

 ∴

由题意  平面ABD, ∴ 为平面ABD的法向量。

设 平面的法向量为

,  ∴ ,  ∴

。∴ 不妨设

。 故所求二面角的大小为

评析:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找--证--求”直接简化成了一步曲:“计算”,这表面似乎谈化了学生的空间想象能力,但实质不然,向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革的精神;

(2)此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若取时,会算得,从而所求二面角为,但依题意只为。因为二面角的大小有时为锐角、直角,有时也为钝角。所以在计算之前不妨先依题意判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”。

(2)解析:球的半径是R=三点都在球面上,两点和两点的球面距离都是,则∠AOB,∠AOC都等于,AB=AC,两点的球面距离是,∠BOC=,BC=1,过B做BD⊥AO,垂足为D,连接CD,则CD⊥AD,则∠BDC是二面角的平面角,BD=CD=,∴∠BDC=,二面角的大小是,选C。

题型4:异面直线间的距离

例7.如图,已知正方体ABCD-棱长为

求异面直线BD与C的距离.

解法一:连结AC交BD的中点O,取的中点M,连结BM交于E,连,则,过E作EF//OM交OB于F,则

又斜线的射影为AC,BDAC,

同理为BD与的公垂线,由于M为的中点,

,EF//OM,,故OB=

解法二.(转化为线面距)

因为BD//平面平面,故BD与的距离就是BD到平面的距离。

,即,得

解法三.(转化为面面距)易证平面//平面,用等体积法易得A到平面的距离为

同理可知:到平面的距离为,而,故两平面间距离为

解法四.(垂面法)如图,BD//平面平面,平面平面,故O到平面的距离为斜边上的高

解法五。(函数最小值法)如图,在上取一点M,作MEBC于E,过E作ENBD交BD于N,易知MN为BD与的公垂线时,MN最小。

设BE=,CE=ME=,EN=

MN====

当时,时,

例8.如图2,正四棱锥的高,底边长。求异面直线之间的距离?

分析:建立如图所示的直角坐标系,则

令向量,且

异面直线之间的距离为:

题型5:点面距离

例9.如图,已知ABCD为边长是4的正方形,E,F分别是AB,AD的中点,GC垂直于ABCD所在的平面,且GC=2,求点B到平面EFG的距离。

解法一:连结BF,BG,

又E,F分别是AB,AD的中点, 

解法二.E,F分别是AB,AD的中点,EF//BD,B到平面GEF的距离为BD上任一点到平面GEF的距离,BDAC于O,EF//BD,

又GC平面ABCD,EF平面ABCD,EFGC,EF平面GEF,平面GEF平面GCH,过O点作HG,则平面GEF,为O到平面GCH的距离,即B到平面GEF的距离。

由解法一知:,由

思维点拔:注意点距,线面距,面面距的转化,利用平面互相垂直作距离也是一种常用的方法。

例10.(1)(06安徽)多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:______(写出所有正确结论的编号)

  ①3;   ②4;   ③5;   ④6;   ⑤7

(2)平行四边形的一个顶点A在平面内,其余顶点在的同侧,已知其中有两个顶点到的距离分别为1和2 ,那么剩下的一个顶点到平面的距离可能是:①1;   ②2;   ③3;   ④4; 

以上结论正确的为______________。(写出所有正确结论的编号)

解析:(1)如图,B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选①③④⑤。

(2)如图,B、D到平面的距离为1、2,则D、B的中点到平面的距离为,所以C到平面的距离为3;

B、C到平面的距离为1、2,D到平面的距离为,则,即,所以D到平面的距离为1;

C、D到平面的距离为1、2,同理可得B到平面的距离为1;所以选①③。

题型6:线面距离

例11.已知正三棱柱的底面边长为8,对角线,D是AC的中点。(1)求点到直线AC的距离。(2)求直线到平面的距离。

解析:(1)连结BD,,由三垂线定理可得:

,所以就是点到直线AC的距离。

(2)因为AC与平面BD交于AC的中点D,设,则//DE,所以//平面,所以到平面BD的距离等于A点到平面BD的距离,等于C点到平面BD的距离,也就等于三棱锥的高。

所以,直线到平面BD的距离是

思维点拔:求空间距离多用转化的思想。

例12.如图7,已知边长为的正三角形中,分别为的中点,,且,设平面且与平行。 求与平面间的距离?

分析:设的单位向量分别为,选取{}作为空间向量的一组基底。

易知

===

是平面的一个法向量,则

,即

直线与平面间的距离=

试题详情

3.空间向量的应用

(1)用法向量求异面直线间的距离

如右图所示,a、b是两异面直线,是a和b 的法向量,点E∈a,F∈b,则异面直线 a与b之间的距离是

(2)用法向量求点到平面的距离

如右图所示,已知AB是平面α的 一条斜线,为平面α的法向量,则 A到平面α的距离为

(3)用法向量求直线到平面间的距离

首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题。

(4)用法向量求两平行平面间的距离

首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题。

(5)用法向量求二面角

如图,有两个平面α与β,分别作这两个平面的法向量,则平面α与β所成的角跟法向量所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角。

(6)法向量求直线与平面所成的角

要求直线a与平面α所成的角θ,先求这个平面α的法向量与直线a的夹角的余弦,易知θ=或者

试题详情

2.空间的距离

(1)点到直线的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离。在直角三角形PAB中求出PB的长即可。

点到平面的距离:点P到平面的距离为点P到平面的垂线段的长.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面的斜线上两点A,B到斜足C的距离AB,AC的比为,则点A,B到平面的距离之比也为.特别地,AB=AC时,点A,B到平面的距离相等;③体积法

(2)异面直线间的距离:异面直线间的距离为间的公垂线段的长.常有求法①先证线段AB为异面直线的公垂线段,然后求出AB的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线间的距离.③找或作出分别过且与分别平行的平面,则这两平面间的距离就是异面直线间的距离.④根据异面直线间的距离公式求距离。

(3)直线到平面的距离:只存在于直线和平面平行之间.为直线上任意一点到平面间的距离。

(4)平面与平面间的距离:只存在于两个平行平面之间.为一个平面上任意一点到另一个平面的距离。

以上所说的所有距离:点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离。所以均可以用求函数的最小值法求各距离。

试题详情

1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

(1)异面直线所成的角的范围是。求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。

具体步骤如下:

①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;

②证明作出的角即为所求的角;

③利用三角形来求角。

(2)直线与平面所成的角的范围是。求直线和平面所成的角用的是射影转化法。

具体步骤如下:

①找过斜线上一点与平面垂直的直线;

②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角;

③把该角置于三角形中计算。

注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,α为斜线与平面内任何一条直线所成的角,则有

(3)确定点的射影位置有以下几种方法:

①斜线上任意一点在平面上的射影必在斜线在平面的射影上;

②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;

③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;

④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:

a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;

b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);

c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;

(4)二面角的范围在课本中没有给出,一般是指,解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种方法

①棱上一点双垂线法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;

②面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;

③空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角。

斜面面积和射影面积的关系公式:(为原斜面面积,为射影面积,为斜面与射影所成二面角的平面角)这个公式对于斜面为三角形,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时,如果能找得斜面面积的射影面积,可直接应用公式,求出二面角的大小。

试题详情

空间的夹角和距离问题是立体几何的核心内容,高考对本讲的考察主要有以下情况:(1)空间的夹角;(2)空间的距离;(3)空间向量在求夹角和距离中的应用。

预测2007年高考对本讲内容的考察将侧重空间向量的应用求夹角、求距离。课本淡化了利用空间关系找角、求距离这方面内容的讲解,而是加大了向量在这方面内容应用的讲解,因此作为立体几何的解答题,用向量方法处理有关夹角和距离将是主要方法,在复习时应加大这方面的训练力度。

题型上空间的夹角和距离主要以主观题形式考察。

试题详情

2.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

试题详情

1.能借助空间几何体内的位置关系求空间的夹角和距离;

试题详情

2.向量在空间中的应用

在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质。

在复习过程中,抓住源于课本,高于课本的指导方针。本讲考题大多数是课本的变式题,即源于课本。因此,掌握双基、精通课本是本章关键。

试题详情

本讲内容主要有空间直角坐标系,空间向量的坐标表示,空间向量的坐标运算,平行向量,垂直向量坐标之间的关系以及中点公式.空间直角坐标系是选取空间任意一点O和一个单位正交基底{i,j,k}建立坐标系,对于O点的选取要既有作图的直观性,而且使各点的坐标,直线的坐标表示简化,要充分利用空间图形中已有的直线的关系和性质;空间向量的坐标运算同平面向量类似,具有类似的运算法则.一个向量在不同空间的表达方式不一样,实质没有改变.因而运算的方法和运算规律结论没变。如向量的数量积a·b=|a|·|b|cos<a,b>在二维、三维都是这样定义的,不同点仅是向量在不同空间具有不同表达形式.空间两向量平行时同平面两向量平行时表达式不一样,但实质是一致的,即对应坐标成比例,且比值为,对于中点公式要熟记。

对本讲内容的考查主要分以下三类:

1.以选择、填空题型考查本章的基本概念和性质

此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题。

试题详情


同步练习册答案