0  434190  434198  434204  434208  434214  434216  434220  434226  434228  434234  434240  434244  434246  434250  434256  434258  434264  434268  434270  434274  434276  434280  434282  434284  434285  434286  434288  434289  434290  434292  434294  434298  434300  434304  434306  434310  434316  434318  434324  434328  434330  434334  434340  434346  434348  434354  434358  434360  434366  434370  434376  434384  447090 

5.已知等比数列的公比为正数,且,则

 A.    B.    C.    D.

试题详情

4.若函数是函数的反函数,且,则

  A.   B.   C.    D.

试题详情

3.已知平面向量a =(x,1),b =(-x,x2  ),则向量a+b

  A.平行于x轴       B.平行于第一、三象限的角平分线

  C.平行于y轴       D.平行于第二、四象限的角平分线

试题详情

2.下列n的取值中,使in =1(i是虚数单位)的是

 A.n=2    B.n=3    C.n=4    D.n=5

试题详情

1.已知全集U=R,则正确表示集合M={-1,0,1}和N={}关系的韦恩(Venn)图是

试题详情

22. (本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

解:(1)因为,,,

所以,   即.

当m=0时,方程表示两直线,方程为;

时, 方程表示的是圆

时,方程表示的是椭圆;

时,方程表示的是双曲线.

(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组,即,

要使切线与轨迹E恒有两个交点A,B,

则使△=,

,即,    且

,

要使,  需使,即,

所以,  即,  即恒成立.

所以又因为直线为圆心在原点的圆的一条切线,

所以圆的半径为,, 所求的圆为.

当切线的斜率不存在时,切线为,与交于点也满足.

综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.

(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1<R<2)相切于A1, 由(2)知,  即   ①,

因为与轨迹E只有一个公共点B1,

由(2)知,

有唯一解

则△=,   即,   ②

由①②得,  此时A,B重合为B1(x1,y1)点,

,所以,,

B1(x1,y1)点在椭圆上,所以,所以,

在直角三角形OA1B1中,因为当且仅当时取等号,所以,即

时|A1B1|取得最大值,最大值为1.

徐洪艳制作

试题详情

21.(本小题满分12分)

已知函数,其中    

(1)    当满足什么条件时,取得极值?

(2)    已知,且在区间上单调递增,试用表示出的取值范围.

解:  (1)由已知得,令,得,

要取得极值,方程必须有解,

所以△,即,  此时方程的根为

,,

所以    

时,

x
(-∞,x1)
x 1
(x1,x2)
x2
(x2,+∞)
f’(x)
+
0

0
+
f (x)
增函数
极大值
减函数
极小值
增函数

所以在x 1, x2处分别取得极大值和极小值.

时,    

x
(-∞,x2)
x 2
(x2,x1)
x1
(x1,+∞)
f’(x)

0
+
0

f (x)
减函数
极小值
增函数
极大值
减函数

所以在x 1, x2处分别取得极大值和极小值.

综上,当满足时, 取得极值.    

(2)要使在区间上单调递增,需使上恒成立.

恒成立,  所以

,,

(舍去),    

时,,当,单调增函数;

,单调减函数,

所以当时,取得最大,最大值为.

所以

时,,此时在区间恒成立,所以在区间上单调递增,当最大,最大值为,所以

综上,当时, ;   当时,    

试题详情

20.(本小题满分12分)

等比数列{}的前n项和为, 已知对任意的  ,点,均在函数均为常数)的图像上.    

(1)求r的值;   

(11)当b=2时,记    求数列的前项和

解:因为对任意的,点,均在函数均为常数)的图像上.所以得,

时,,    

时,,

又因为{}为等比数列,  所以,  公比为,   所以

(2)当b=2时,,  

   

相减,得

     

所以

试题详情

19. (本小题满分12分)

  一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):

 
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600

按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.

(1)    求z的值.    

(2)    用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;

(3)    用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,  8.6, 9.2,  9.6,  8.7,  9.3,  9.0,  8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

解: (1).设该厂本月生产轿车为n辆,由题意得,,所以n=2000. z=2000-100-300-150-450-600=400

(2) 设所抽样本中有m辆舒适型轿车,因为用分层抽样的方法在C类轿车中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S1,S2;B1,B2,B3,则从中任取2辆的所有基本事件为(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以从中任取2辆,至少有1辆舒适型轿车的概率为.

(3)样本的平均数为,

那么与样本平均数之差的绝对值不超过0.5的数为9.4,  8.6,  9.2,  8.7,  9.3,  9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为.

试题详情

18.(本小题满分12分)

   如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2,  AA=2,  E、E分别是棱AD、AA的中点.    

(1)    设F是棱AB的中点,证明:直线EE//平面FCC

(2)    证明:平面D1AC⊥平面BB1C1C.

证明:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1

连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB//CD,

所以CDA1F1,A1F1CD为平行四边形,所以CF1//A1D,

又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,

所以CF1//EE1,又因为平面FCC平面FCC

所以直线EE//平面FCC.

(2)连接AC,在直棱柱中,CC1⊥平面ABCD,AC平面ABCD,

所以CC1⊥AC,因为底面ABCD为等腰梯形,AB=4, BC=2,

 F是棱AB的中点,所以CF=CB=BF,△BCF为正三角形,

,△ACF为等腰三角形,且

所以AC⊥BC,  又因为BC与CC1都在平面BB1C1C内且交于点C,

所以AC⊥平面BB1C1C,而平面D1AC,

所以平面D1AC⊥平面BB1C1C.

试题详情


同步练习册答案