4.(2008 台湾)如图,有两个三角锥ABCD、EFGH,其中甲、乙、丙、丁分别表示rABC、rACD、 rEFG、rEGH。若ÐACB=ÐCAD=ÐEFG=ÐEGH=70°,ÐBAC=ÐACD=ÐEGF=ÐEHG =50°,则下列叙述何者正确? ( )
(A)甲、乙全等,丙、丁全等 (B) 甲、乙全等,丙、丁不全等
(C) 甲、乙不全等,丙、丁全等 (D) 甲、乙不全等,丙、丁不全等
3.(08绵阳市)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A1B1C1,则△A1B1C1与△ABC重叠部分(图中阴影部分)的面积为( ).
A. B. C. D.
2.(2008年成都市)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是( )
(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF
(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF
1. (2008年山东省潍坊市)如图, Rt△ABC中,AB⊥AC,AD⊥BC,平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是( )
A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE,
18.一辆质量m=2 kg的平板车左端放有质量M=3 kg的小滑块,滑块与平板车之间的动摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2 m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g=10 m/s2)求:
(1)平板车第一次与墙壁碰撞后向左运动的最大距离.
(2)平板车第二次与墙壁碰撞前瞬间的速度v.
(3)为使滑块始终不会滑到平板车右端,平板车至少多长? 答案:(1)0.33 m (2)0.4 m/s (3)0.833 m
[1B 2B 3A 4BC 5C 6A 7ABD 8D 9AD]
17.有一炮竖直向上发射炮弹。炮弹的质量为M=6.0 kg(内含炸药的质量可以忽略不计),射出的初速度v0=60 m/s。当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m=4.0 kg。现要求这一片不能落到以发射点为圆心、以R=600 m为半径的圆周范围内,则刚爆炸完时两弹片的总动能至少多大?(g=10 m/s2,忽略空气阻力)
答案 Ek=6.0×104 J
16.图中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态.另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行.当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回到出发点P并停止.滑块A和B与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为l2 ,重力加速度为g.求A从P点出发时的初速度v0.
答案 v0=
15.一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的.求在碰撞中斜面对小球的冲量的大小.
答案 I=m v0
14.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B两物体位于光滑水平面上,仅限于沿同一直线运动。当它们之间的距离大于等于某一定值d时,相互作用力为零;当它们之间的距离小于d时,存在大小恒为F的斥力。
设A物体质量m1=1.0 kg,开始时静止在直线上某点;B物体质量m2=3.0 kg,以速度v0从远处沿该直线向A运动,如图所示。若d=0.10 m,F=0.60 N,v0=0.20 m/s,求:
(1)相互作用过程中A、B加速度的大小;
(2)从开始相互作用到A、B间的距离最小时,系统(物体组)动能的减少量;
(3)A、B间的最小距离。
答案 0.6 、0.2; 0.015J; 0.075m
13.如图,长木板ab的b端固定一档板,木板连同档板的质量为M=4.0 kg,a、b间距离s=2.0 m。木板位于光滑水平面上。在木板a端有一小物块,其质量m=1.0 kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态。现令小物块以初速v0=4.0 m/s沿木板向前滑动,直到和档板相碰。碰撞后,小物块恰好回到a端而不脱离木板。求碰撞过程中损失的机械能。
答案 E1=·-2μmgs
代入数据得E1=2.4 J
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com