精英家教网 > 初中数学 > 题目详情
以如下的a、b、c为三边长的三角形不是直角三角形的是

A.
B.a=1.5,b=2,c=2.5
C.a:b:c=5:12:13
D.a=2k,b=3k,c=4k

相关习题

科目:初中数学 来源:山东省期中题 题型:单选题

以如下的a、b、c为三边长的三角形不是直角三角形的是
[     ]

A.
B.a=1.5,b=2,c=2.5
C.a:b:c=5:12:13
D.a=2k,b=3k,c=4k

查看答案和解析>>

科目:初中数学 来源: 题型:

把三角形形状的纸片放在方框纸上,使其每一个顶点都在格点上,如图1所示(方格边长均为1).对这个三角形进剪切、拼接后,可以得到一个平行四边形,如图2中阴影部分所示.
剪切、拼接的方案如下:如图2,取BC的中点M,连AM.剪下△AMC后,沿直线BC翻折,所得图形称为△DMC;再把△DMC沿射线CA方向平移线段CA的长度后,可得到平行四边形AEBM.
我们约定:剪切、拼接 时,纸片的每一部分都要被用到,而且不得用所给纸片以外的纸片.

(1)请你采用不同于图2的剪切、拼接方案,也得到一个平行四边形,并说明你的剪切、拼接方案,同时在图3中用阴影表示出你得到的平行四边形;
(2)对这个三角形进行剪切、拼接后,也可以得到一梯形.试在图4中,用阴影表示出你得到的梯形(不必说明剪切、拼接方案,但必须保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

把三角形形状的纸片放在方框纸上,使其每一个顶点都在格点上,如图1所示(方格边长均为1).对这个三角形进剪切、拼接后,可以得到一个平行四边形,如图2中阴影部分所示.
剪切、拼接的方案如下:如图2,取BC的中点M,连AM.剪下△AMC后,沿直线BC翻折,所得图形称为△DMC;再把△DMC沿射线CA方向平移线段CA的长度后,可得到平行四边形AEBM.
我们约定:剪切、拼接 时,纸片的每一部分都要被用到,而且不得用所给纸片以外的纸片.

(1)请你采用不同于图2的剪切、拼接方案,也得到一个平行四边形,并说明你的剪切、拼接方案,同时在图3中用阴影表示出你得到的平行四边形;
(2)对这个三角形进行剪切、拼接后,也可以得到一梯形.试在图4中,用阴影表示出你得到的梯形(不必说明剪切、拼接方案,但必须保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 华师大八年级版 2009-2010学年 第8期 总第164期 华师大版 题型:044

判断以如下的a、b、c为边长的三角形是不是直角三角形

(1)a=11,b=60,c=61;(2)a=,b=1,c=

查看答案和解析>>

科目:初中数学 来源: 题型:044

试判断以如下的a、b、c为三边长的三角形是不是直角三角形.如果是,那么哪一条边所对的角是直角?

(1)a=25,b=20,c=15;
(2)a=1,b=2,
(3)a=40,b=9,c=40;
(4)a:b:c=5:12:13.

查看答案和解析>>

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:047

位似三角形

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位

似中心.利用三角形的位似可以将一个三形缩小或放大.

(1)

如图,点O是等边三角形PQR的中心,分别是OP、OQ、OR的中点,则△与△PQR是位似三角形.此时,△与△PQR的位似比、位似中心分别为

[  ]

A.

2;点P

B.

;点P

C.

2;点O

D.

;点O

(2)

如图,用下面的方法可以画AOB的内接等边三角形.阅读后证明相应问题.画法:

①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;

②连结OE并延长,交AB于点,过点∥EC,交OA于点,作∥ED,交OB于点

③连结.则△是AOB的内接三角形.

求证:△是等边三角形.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,对应边平行,那么这两个三角形也是位似三角形,它们的相似比是位似比,这个点是位似中心,利用三角形的位似可以将一个三角形缩小或放大。
(1)如图(1)所示,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形,此时△P′Q′R′与△PQR的位似比、位似中心分别为(    )   
A.2、点P    
B.、点P
C.2、点O    
D.、点O
(2)如图(2)所示,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题。
画法:
①在△ABO内画等边△CDE,使点C在OA上,点D在OB上;  
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E'D′∥ED,交OB于点D′;  
③连接C′D′,则△C′D′E′是△AOB的内接等边三角形,试说明△C′D′E′是等边三角形。

查看答案和解析>>

科目:初中数学 来源: 题型:

是等边三角形,D是射线BC上的一个动点(与点BC不重合),是以AD为边的等边三角形,过点E,交射线AC于点F,连结BE.

(1)如图,当点D在线段BC上运动时。①求证:;②探究四边形BCFE是怎样的四边形?并说明理由;

(2)如图,当点D在线段BC的延长线上运动时,请直接写出(1)的两个结论是否依然成立;

(3)在(2)的情况下,当点D运动到什么位置时,四边形BCFE是菱形?并说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

是等边三角形,D是射线BC上的一个动点(与点B、C不重合),是以AD为边的等边三角形,过点E作,交射线AC于点F,连结BE.
(1)如图,当点D在线段BC上运动时。①求证:;②探究四边形BCFE是怎样的四边形?并说明理由;

(2)如图,当点D在线段BC的延长线上运动时,请直接写出(1)的两个结论是否依然成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCFE是菱形?并说明理由。

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一

个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做

位似中心。利用三角形的位似可以将一个三角形缩小或放大。

1)选择:如图(1),点O是等边PQR的中心,P’Q’R’分别是OPOQOR

中点,则P’Q’R’与是PQR是位似三角形,此时,P’Q’R’PQR的位似比,位

似中心分别为                 

A. 2,点P      B. ,点P         C. 2,点O      D. ,点O

 

2)如图(2),用下面的方法可以画AOB的内接等边三角形,阅读后证明相应的

问题。画法:AOB内画等边三角形CDE,使点COA上,点DOB上;

连结OE并延长,交AB于点E’,过点E’E’C’//EC,交OA于点C’,作E’D’//ED

OB于点D’连结C’D’,则C’D’E’ 查看答案和解析>>