精英家教网 > 初中数学 > 题目详情
已知M、N、P是同一直线上的三个点,MN=a,NP=b,(a>b),则MP的距离等于

A、a+b
B、a-b 
C、b-a 
D、a+b或a-b
相关习题

科目:初中数学 来源: 题型:

23、已知△ABC,O是△ABC所在平面内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2.
(1)如图(1),当点O与点A在直线BC的异侧时,∠1+∠2+∠A+∠O=
360
°;
(2)如图(2),当点O在△ABC的内部时,∠1、∠2、∠A、∠O四个角之间满足什么样的数量关系?请说明你的理由;
(3)当点O在△ABC所在平面内运动时(点O不在三边所在的直线上),由于所处的位置不同,∠1、∠2、∠A、∠O四个角之间满足的数量关系还存在着与(1)、(2)中不同的结论,你能否在图(3)中画出一种不同的示意图,并直接写出相应的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知M、N、P是同一直线上的三个点,MN=a,NP=b,那么M、P的距离等于
a+b或a-b或b-a

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=
3
,BC=1.连接BF,分别交AC、DC、DE于点P、Q、R.
(1)求证:△BFG∽△FEG;
(2)求出BF的长;
(3)求
BP
QR
=
 
(直接写出结果).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的精英家教网正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
152

(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知下列四个命题:
①过原点O的直线的解析式为y=kx(k≠0);
②有两边和其中一边上的高对应相等的两个三角形全等;
③有两边和其中一边上的中线对应相等的两个三角形全等;
④在同圆或等圆中,若圆周角不等则所对的弦也不等.
其中不正确的命题是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分别是边AB、BC上的动点,且点P不与点A、B重合,点Q不与点B、C重合.
(1)在以下五个结论中:①∠CQP=45°;②PQ=AC;③以A、P、C为顶点的三角形全等于△PQB;④以A、P、C为顶点的三角形全等于△CPQ;⑤以A、P、C为顶点的三角形相似于△CPQ.一定不成立的是
 
.(只需将结论的代号填入题中的模线上).
(2)设AC=BC=1,当CQ的长取不同的值时,△CPQ是否可能为直角三角形?若可能,请说明所有的精英家教网情况;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,点P在线段AB上(AP>PB),C、D、E分别是AP、PB、AB的中点,正方形CPFG和正方形PDHK在直线AB同侧.
(1)求证:△EHG是等腰直角三角形;
(2)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.
运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;
运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为
2
cm/s
,当QC⊥DF时暂停旋转;
运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.
设运动时间为t(s),中间的暂停不计时,
解答下列问题
(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时
 
s;
(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0),B(x2,0)(A在B的左侧),与y轴的正半轴交于点C.如果x1+x2=1,x1•x2=-6,且△ABC的面积为数学公式
(1)求此抛物线的解析式.
(2)如果P是线段AC上一个动点(不与A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得以PQ为一腰的△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案