精英家教网 > 高中数学 > 题目详情
已知向量=(1,3),=(3,n),若2-共线,则实数n的值是

A.3+2
B.3-2
C.6
D.9
相关习题

科目:高中数学 来源:0101 期中题 题型:单选题

已知向量=(1,3),=(3,n),若2-共线,则实数n的值是
[     ]
A.3+2
B.3-2
C.6
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1+cosB,sinB)与向量
n
=(0,1)的夹角为
π
3
,其中A、B、C为△ABC的三个内角.
(1)求角B的大小;
(2)若AC=2
3
,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
,1)
,向量
n
是与向量
m
夹角为
π
3
的单位向量.
(1)求向量
n

(2)若向量
n
与向量
q
=(-
3
,1)
平行,与向量
p
=(
3
x2,x-y2)
垂直,求t=y2+5x+4的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,1)
,向量
n
与向量
m
的夹角为
4
,且
n
m
=-1

(1)求向量
n
的坐标;
(2)若向量
n
与向量
i
的夹角为
π
2
,向量
p
=(x2a2),
q
=(a2,x)
,求关于x的不等式(
p
+
n
)•
q
<1
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为60°,且|
a
|=1,|
b
|=2
,设
m
=3
a
-
b
n
=t
a
+2
b

(1)求
a
b
;  (2)试用t来表示
m
n
的值;(3)若
m
n
的夹角为钝角,试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
m
=(
3
,1)
,向量
n
是与向量
m
夹角为
π
3
的单位向量.
(1)求向量
n

(2)若向量
n
与向量
q
=(-
3
,1)
平行,与向量
p
=(
3
x2,x-y2)
垂直,求t=y2+5x+4的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
m
=(1,1)
,向量
n
与向量
m
的夹角为
4
,且
n
m
=-1

(1)求向量
n
的坐标;
(2)若向量
n
与向量
i
的夹角为
π
2
,向量
p
=(x2a2),
q
=(a2,x)
,求关于x的不等式(
p
+
n
)•
q
<1
的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
b
的夹角为60°,且|
a
|=1,|
b
|=2
,设
m
=3
a
-
b
n
=t
a
+2
b

(1)求
a
b
;  (2)试用t来表示
m
n
的值;(3)若
m
n
的夹角为钝角,试求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知与向量
e
=(1,
3
)平行的直线l1过点A(0,-2
3
),椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的中心关于直线l1的对称点在直线x=
a2
c
(c2=a2-b2)上,且直线l1过椭圆C的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-2,0)的直线l2交椭圆C于M,N两点,若∠MON≠
π
2
,且(
OM
ON
)•sin∠MON=
4
6
3
,(O为坐标原点),求直线l12的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a,b,c,且c=
7
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(3,sinB)
共线,求a,b的值.

查看答案和解析>>


同步练习册答案