精英家教网 > 高中数学 > 题目详情
命题“若f(x)是正切函数,则f(x)是周期函数”的否命题是(  )
A.若f(x)是正切函数,则f(x)不是周期函数
B.若f(x)是周期函数,则f(x)是正切函数
C.若f(x)不是正切函数,则f(x)不是周期函数
D.若f(x)不是周期函数,则f(x)不是正切函数
相关习题

科目:高中数学 来源: 题型:单选题

命题“若f(x)是正切函数,则f(x)是周期函数”的否命题是


  1. A.
    若f(x)是正切函数,则f(x)不是周期函数
  2. B.
    若f(x)是周期函数,则f(x)是正切函数
  3. C.
    若f(x)不是正切函数,则f(x)不是周期函数
  4. D.
    若f(x)不是周期函数,则f(x)不是正切函数

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广西桂林十八中高三(上)第一次月考数学试卷(理科)(解析版) 题型:填空题

已知f(x)是定义域为R的函数,给出下列命题:
①若f′(1)=0,则x=1是f(x)的极值点;
②若1<a<3,则函数f(x)=是单调函数;
③若f(x)为奇函数,又f(x+1)为偶函数,则f(1)+f(3)+…+f(19)=f(2)+f(4)+…+f(20);
④若f(x)=xn+1(n∈N*),且f(x)在x=1处的切线与x轴交于点(xn,0),则lgx1+lgx2+…+lgx99=-2
其中正确命题的序号是     (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省雅安中学高三(下)段考数学试卷(文科)(解析版) 题型:填空题

命题:
(1)若f(x)=ax2+bx+3a+b是偶函数,其定义域是[a-1,2a],则f(x)在区间是减函数.
(2)如果一个数列{an}的前n项和则此数列是等比数列的充要条件是a+c=0.
(3)曲线y=x3+x+1过点(1,3)处的切线方程为:4x-y-1=0.
(4)已知集合P∈{(x,y)|y=k},Q∈{(x,y)|y=ax+1,a>0且a≠1},若P∩Q只有一个子集.则k<1.
以上四个命题中,正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省雅安中学高三(下)段考数学试卷(文科)(解析版) 题型:填空题

命题:
(1)若f(x)=ax2+bx+3a+b是偶函数,其定义域是[a-1,2a],则f(x)在区间是减函数.
(2)如果一个数列{an}的前n项和则此数列是等比数列的充要条件是a+c=0.
(3)曲线y=x3+x+1过点(1,3)处的切线方程为:4x-y-1=0.
(4)已知集合P∈{(x,y)|y=k},Q∈{(x,y)|y=ax+1,a>0且a≠1},若P∩Q只有一个子集.则k<1.
以上四个命题中,正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c,在定义域x∈[-2,2]上表示的曲线过原点,且在x=±1处的切线斜率均为-1.有以下命题:①f(x)是奇函数;②若f(x)在[s,t]内递减,则|t-s|的最大值为4;③f(x)的最大值为M,最小值为m,则M+m=0.④若对?x∈[-2,2],k≤f'(x)恒成立,则k的最大值为2.其中正确命题的个数有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①函数y=
x-1
x+1
的单调区间是(-∞,-1)∪(-1,+∞).
②函数f(x)=|x|•(|x|+|2-x|)-1有2个零点.
③已知函数f(x)=ex-mx+1的图象为曲线C,若曲线C存在与直线y=
1
2
x垂直的切线,则实数m的取值范围是m>2.
④若函数f(x)=
(3a-1)x+4a(x<1)
logax    (x≥1)
对任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,则实数a的取值范围是(-
1
7
,1].
其中正确命题的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=-2cosx(x∈[0,π])与函数g(x)=
1
2
x2+lnx
有下列命题:
①函数f(x)的图象关于x=
π
2
对称;②函数g(x)有且只有一个零点;
③函数f(x)和函数g(x)图象上存在平行的切线;
④若函数f(x)在点P处的切线平行于函数g(x)在点Q处的切线,则直线PQ的斜率为
1
2-π
.其中正确的命题是
②③④
②③④
.(将所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=-2cosx,x∈[0,π]与函数g(x)=
1
2
x2+lnx
有下列命题:
①函数f(x)的图象不管怎样平移所得图象对应的函数都不会是奇函数;
②方程g(x)=0没有零点;
③函数f(x)和函数g(x)图象上存在平行的切线;
④若函数f(x)在点P处的切线平行于函数g(x)在点Q处的切线,则直线PQ的斜率为
1
2-π

其中正确的是
③④
③④
(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:①f[f(x)]=x也一定没有实数根;②若a<0,则必存在实数x0,使f[f(x)]>x0;③若a>0,则不等式f[f(x)]>x对一切实数x都成立;④若a+b+c=0,则不等式f[f(x)]<x对一切实数x都成立;
以上说法中正确的是:
①③④
①③④
.(把你认为正确的命题的所有序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c,在定义域x∈[-2,2]上表示的曲线过原点,且在x=±1处的切线斜率均为-1.有以下命题:
①f(x)是奇函数;②若f(x)在[s,t]内递减,则|t-s|的最大值为4;③f(x)的最大值为M,最小值为m,则M+m=0; ④若对?x∈[-2,2],k≤f′(x)恒成立,则k的最大值为2.其中正确命题的序号为
①③
①③

查看答案和解析>>


同步练习册答案