精英家教网 > 初中数学 > 题目详情
已知M(a,b)是平面直角坐标系xOy中的点,其中a是从l,2,3,4三个数中任取的一个数,b是从l,2,3,4,5四个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件Qn(2≤n≤9,n为整数),则当Qn的概率最大时,n的所有可能的值为(  )
A.5B.4或5C.5或6D.6或7
相关习题

科目:初中数学 来源: 题型:

平面直角坐标系xOy中,已知点A(2,0),点B(-4,0),直线l经过点A且与x轴垂直.若点B关于y轴的对称点是B1,点B1关于直线l的对称点是B2,则点B2的坐标是
(-2,0)
(-2,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

平面直角坐标系xOy中,已知定点A(1,0)和B(0,1).
(1)如图1,若动点C在x轴上运动,则使△ABC为等腰三角形的点C有几个?
(2)如图2,直线l是过原点O的一条动直线,过A、B向直线l作垂线,垂足分别为M,N,试判断线段AM、BN、MN之间的数量关系,并说明理由;
(3)当动直线l运动到如图3的位置时,过A、B向动直线l作垂线,垂足分别为M,N,试判断线段AM、BN、MN之间的数量关系,不需证明. 

查看答案和解析>>

科目:初中数学 来源:河北省模拟题 题型:单选题

平面直角坐标系xOy中,已知点A(-2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在
[     ]
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有(  )
A、5个B、4个C、3个D、2个

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较精英家教网锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,
2
3
3
),直线l2的函数表达式为y=-
3
3
x+
4
3
3
,l1与l2相交于点P.⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a.过点C作CM⊥x轴,垂足是点M.
(1)填空:直线l1的函数表达式是
 
,交点P的坐标是
 
,∠FPB的度数是
 
°;
(2)当⊙C和直线l2相切时,请证明点P到直线的距离CM等于⊙C的半径R,并写出R=3
2
-2时a的值;
(3)当⊙C和直线l2不相离时,已知⊙C的半径R=3
2
-2,记四边形NMOB的面积为S(其中点N精英家教网是直线CM与l2的交点).S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到0A′,则点A′在平面直角坐标系中的位置是在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xoy中,已知点P(2,1),点T(t,0)是x轴上的一个动点,当△PTO是等腰三角形时,t值的个数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xoy中,已知点P(-2,1)关于y轴的对称点P′,点T(t,0)是x轴上的一个动点,当△P′TO是等腰三角形时,t的值是
 

查看答案和解析>>


同步练习册答案