精英家教网 > 初中数学 > 题目详情
如图,点P为∠CAB内一点,且P到AB、AC的距离PE=PF,则△PEA≌PFA的理由是(  )
A.HLB.SSSC.ASAD.AAS
魔方格
相关习题

科目:初中数学 来源: 题型:

如图,点P为∠CAB内一点,且P到AB、AC的距离PE=PF,则△PEA≌PFA的理由是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P为∠CAB内一点,且P到AB、AC的距离PE=PF,则△PEA≌PFA的理由是(  )
A.HLB.SSSC.ASAD.AAS
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,点P为∠CAB内一点,且P到AB、AC的距离PE=PF,则△PEA≌PFA的理由是


  1. A.
    HL
  2. B.
    SSS
  3. C.
    ASA
  4. D.
    AAS

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

如图,点P为∠CAB内一点,且点P到AB、AC的距离PE=PF,则下列哪个判别方法不能推出△PEA≌△PFA
[     ]

A.HL
B.AAS 
C.ASA
D.AAA

查看答案和解析>>

科目:初中数学 来源:安徽省期末题 题型:操作题

(1)如下图,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5,则 ∠APB=(      )。
分析:由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌(      )这 样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数。
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如右图,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面材料,并解决问题:

(1)如图(10),等边△ABC内有一点P若点P到顶点ABC的距离分别为3,4,5则

APB=__________

分析:由于PAPB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌__________这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.

        

 (2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(11),△ABC中,∠CAB=90°,AB=ACEFBC上的点且∠EAF=45°,求证:EF2=BE2+FC2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

22、阅读下面材料,并解决问题:
(1)如图(1),等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,则∠APB=
150°
,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌
△ABP
这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2

查看答案和解析>>

科目:初中数学 来源:2009-2010学年安徽省亳州市蒙城县涡南片19校联考九年级(上)期末数学试卷(解析版) 题型:解答题

阅读下面材料,并解决问题:
(1)如图(1),等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,则∠APB=______,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2

查看答案和解析>>

科目:初中数学 来源:2009-2010学年安徽省蒙城县涡南片19校联考九年级(上)期末数学试卷(解析版) 题型:解答题

阅读下面材料,并解决问题:
(1)如图(1),等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,则∠APB=______,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2

查看答案和解析>>

科目:初中数学 来源:2011—2012学年安徽全椒八年级下第三次月考数学试卷(带解析) 题型:解答题

阅读下面材料,并解决问题:
(1)如下图1,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=______,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌_______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.

查看答案和解析>>


同步练习册答案