精英家教网 > 初中数学 > 题目详情
以下判断正确的是(  )
A.三角形的一个外角等于两个内角的和
B.三角形的外角大于任何一个内角
C.一个三角形中,至少有一个角大于或等于60°
D.三角形的外角是内角的邻补角
相关习题

科目:初中数学 来源: 题型:

如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:

甲:(1)取AB中点D

    (2)过D作直线AC的并行线,交于P,则P即为所求

乙:(1)取AC中点E

    (2)过E作直线AB的并行线,交于P,则P即为所求

对于甲、乙两人的作法,下列判断何者正确?(  )

 

A.

两人皆正确

B.

两人皆错误

C.

甲正确,乙错误C

D.

甲错误,乙正确

查看答案和解析>>

科目:初中数学 来源:2012年台湾省中考数学试卷(解析版) 题型:选择题

如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:
甲:(1)取AB中点D
    (2)过D作直线AC的并行线,交于P,则P即为所求
乙:(1)取AC中点E
    (2)过E作直线AB的并行线,交于P,则P即为所求
对于甲、乙两人的作法,下列判断何者正确?( )

A.两人皆正确
B.两人皆错误
C.甲正确,乙错误C
D.甲错误,乙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

39、设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

25、我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.并发现了“勾股定理”.若直角三角形三边长都为正整数,则称为一组勾股数,如“勾3股4弦5”.勾股数的寻找与判断不是件很容易的事,不过还是有一些规律可循的.(以下n为正整数,且n≥2)
(1)观察:3、4、5;   5、12、13;  7、24、25;…,
小明发现这几组勾股数的勾都是奇数,从3起就没有间断过,且股和弦只相差1.小明根据发现的规律,推算出这一类的勾股数可以表示为:2n-1、2n(n-1)、2n(n-1)+1.请问:小明的这个结论正确吗?
正确
.(直接回答正确或错误,不必证明)
(2)继续观察第一个数为偶数的情况:4、3、5;   6、8、10;   8、15、17;…,
亲爱的同学们,你能像小明一样发现每组勾股数中的其他两边长都有何规律吗?若用2n表示第一个偶数,请分别用n的代数式来表示其他两边,并证明确实是勾股数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.并发现了“勾股定理”.若直角三角形三边长都为正整数,则称为一组勾股数,如“勾3股4弦5”.勾股数的寻找与判断不是件很容易的事,不过还是有一些规律可循的.(以下n为正整数,且n≥2)
(1)观察:3、4、5;  5、12、13; 7、24、25;…,
小明发现这几组勾股数的勾都是奇数,从3起就没有间断过,且股和弦只相差1.小明根据发现的规律,推算出这一类的勾股数可以表示为:2n-1、2n(n-1)、2n(n-1)+1.请问:小明的这个结论正确吗?
答______.(直接回答正确或错误,不必证明)
(2)继续观察第一个数为偶数的情况:4、3、5;  6、8、10;  8、15、17;…,
亲爱的同学们,你能像小明一样发现每组勾股数中的其他两边长都有何规律吗?若用2n表示第一个偶数,请分别用n的代数式来表示其他两边,并证明确实是勾股数.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省宁波市初中数学复习评估练习(五)(解析版) 题型:选择题

已知a,b,c为三角形的三边,则关于代数式a2-2ab+b2-c2的值,下列判断正确的是( )
A.大于0
B.等于0
C.小于0
D.以上均有可能

查看答案和解析>>

科目:初中数学 来源: 题型:

2、下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是(  )

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(江西卷)数学(解析版) 题型:解答题

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

●操作发现:

在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是        (填序号即可)

①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.

●数学思考:

在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;

●类比探索:

在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.

答:       

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中:
①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;
②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;
③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.
正确的是(  )
A.①和②B.②和③C.①和③D.①②③

查看答案和解析>>


同步练习册答案