精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x-2)(x-
1
2
)
的图象与x轴的交点分别为(a,0)和(b,0),则函数g(x)=ax-b图象可能为(  )
A.
魔方格
B.
魔方格
C.
魔方格
D.
魔方格
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(x-2)(x-
1
2
)
的图象与x轴的交点分别为(a,0)和(b,0),则函数g(x)=ax-b图象可能为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=(x-2)(x-
1
2
)
的图象与x轴的交点分别为(a,0)和(b,0),则函数g(x)=ax-b图象可能为(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx

(1)当a=b=
1
2
时,求函数h(x)=f(x)-g(x)的单调区间;
(2)若b=2且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)当a≠0时,设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M,N,则是否存在点R,使C1在点M处的切线与C2在点N处的切线平行?如果存在,请求出R的横坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx-
3
cosωx(ω>0)
的图象与x轴的两个相邻交点的距离等于
π
2
,则为得到函数y=f(x)的图象可以把函数y=sinωx的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的图象过点P(
π
12
,0)
,且图象上与点P最近的一个最低点是Q(-
π
6
,-2)

(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(α+
π
12
)=
3
8
,且α为第三象限的角,求sinα+cosα的值;
(Ⅲ)若y=f(x)+m在区间[0,
π
2
]
上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
|x|
x2

(1)请写出(不必证明)函数f(x)的定义域,奇偶性,单调性,值域,并画出图象;
(2)设任意的x1>0,x2>0,试猜测
1
2
[f(x1)+f(x2)]
f(
x1+x2
2
)
的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
3
x3-
1
2
(a+1)x2+x-
1
3
(a∈R).
(1)函数f(x)的图象在点(-1,f(-1))处的切线方程为12x-y+b=0(b∈R),求a与b的值;
(2)若a<0,求函数f(x)的极值;
(3)是否存在实数a使得函数f(x)在区间[0,2]上有两个零点?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx
(注:ln2≈0.693)
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,若直线y=b与函数y=f(x)的图象在[
1
2
,2]
上有两个不同交点,求实数b的取值范围:
(3)求证:对大于1的任意正整数n,lnn>
1
2
+
1
3
+
1
4
+…+
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=lnx,   g(x)=
1
2
ax2+2x

(1)若曲线y=f(x)-g(x)在x=1与x=
1
2
处的切线相互平行,求a的值及切线斜率.
(2)若函数y=f(x)-g(x)在区间(
1
3
,1)
上单调递减,求a的取值范围.
(3)设函数f(x)的图象C1与函数g(x)的图象C2交与P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
a
3
x3-
1
2
(a+1)x2+x-
1
3
(a∈R).
(1)函数f(x)的图象在点(-1,f(-1))处的切线方程为12x-y+b=0(b∈R),求a与b的值;
(2)若a<0,求函数f(x)的极值;
(3)是否存在实数a使得函数f(x)在区间[0,2]上有两个零点?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>


同步练习册答案