精英家教网 > 高中数学 > 题目详情
已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(  )
A.否命题“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”是真命题
B.逆命题“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”是假命题
C.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”是真命题
D.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题
相关习题

科目:高中数学 来源: 题型:

已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(  )
A.否命题“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”是真命题
B.逆命题“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”是假命题
C.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”是真命题
D.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题

查看答案和解析>>

科目:高中数学 来源:2013年高考数学备考复习卷1:集合与常用逻辑用语(解析版) 题型:选择题

已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )
A.否命题“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”是真命题
B.逆命题“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”是假命题
C.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”是真命题
D.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:不等式ex>m的解集为R,命题q:f(x)=
2-m
x
在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题P:不等式ex>m的解集为R,命题q:f(x)=
2-m
x
在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是(  )
A.(-∞,o]B.(-∞,2)C.[0,2)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1,则
①否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1,”,是真命题;
②逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题;
③逆否命题是“若m>1,则函数在f(x)=ex-mx(0,+∞)上是减函数”,是真命题;
④逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题.
其中正确结论的序号是
.(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

19、已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1,则
①否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1,”,是真命题;
②逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题;
③逆否命题是“若m>1,则函数在f(x)=ex-mx(0,+∞)上是减函数”,是真命题;
④逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题.
其中正确结论的序号是______.(填上所有正确结论的序号)

查看答案和解析>>


同步练习册答案