精英家教网 > 高中数学 > 题目详情
某工厂某种产品的产量x(千件)与单位成本y(万元)之间的关系满足y=60-2.5x,则以下说法正确的是(  )
A.产品每增加1000件,单位成本下降2.5万元
B.产品每减少1100件,单位成本上升2.5万元
C.产品每增加1000件,单位成本上升2.5万元
D.产品每减少1000件,单位成本下降2.5万元
相关习题

科目:高中数学 来源: 题型:

某工厂某种产品的产量x(千件)与单位成本y(万元)之间的关系满足y=60-2.5x,则以下说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某工厂某种产品的产量x(千件)与单位成本y(万元)之间的关系满足y=60-2.5x,则以下说法正确的是(  )
A.产品每增加1000件,单位成本下降2.5万元
B.产品每减少1100件,单位成本上升2.5万元
C.产品每增加1000件,单位成本上升2.5万元
D.产品每减少1000件,单位成本下降2.5万元

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

某工厂某种产品的产量x(千件)与单位成本y(万元)之间的关系满足y=60-2.5x,则以下说法正确的是


  1. A.
    产品每增加1000件,单位成本下降2.5万元
  2. B.
    产品每减少1100件,单位成本上升2.5万元
  3. C.
    产品每增加1000件,单位成本上升2.5万元
  4. D.
    产品每减少1000件,单位成本下降2.5万元

查看答案和解析>>

科目:高中数学 来源:陕西省期中题 题型:单选题

某工厂某种产品的产量x(千件)与单位成本y(万元)之间的关系满足y=60-2.5x,则以下说法正确的是 
[     ]
A.产品每增加1000件,单位成本下降2.5万元  
B.产品每减少1100件,单位成本上升2.5万元  
C.产品每增加1000件,单位成本上升2.5万元  
D.产品每减少1000件,单位成本下降2.5万元

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海市长宁区高三上学期教学质量检测理科数学试卷(解析版) 题型:解答题

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.

(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;

(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海市长宁区高三上学期教学质量检测文科数学试卷(解析版) 题型:解答题

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.

(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;

(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=
1
3
x2+10x
(万元).当年产量不小于80千件时,C(x)=51x+
10000
x
-1450
(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>


同步练习册答案