精英家教网 > 高中数学 > 题目详情
对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值(  )
A.1B.0C.-1D.无最大值
相关习题

科目:高中数学 来源: 题型:

对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值(  )
A.1B.0C.-1D.无最大值

查看答案和解析>>

科目:高中数学 来源:陕西省期中题 题型:单选题

对于每一个实数x,f(x)是y=2x与y=﹣x+1这两个函数中的较小者,则f(x)的最大值  
[     ]
A.1  
B.0  
C.﹣1  
D.无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是
①②④⑤
①②④⑤

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省茂名市高州市长坡中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:填空题

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是   

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于每一个实数x,设函数f(x)是y=4x+1,y=x+2,y=-2x+4三个函数中的最小值,则f(x)的最大值是
 

查看答案和解析>>

科目:高中数学 来源:2011年江苏省镇江九中高三(上)期中数学试卷(理科)(解析版) 题型:填空题

对于每一个实数x,设函数f(x)是y=4x+1,y=x+2,y=-2x+4三个函数中的最小值,则f(x)的最大值是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于每一个实数x,设函数f(x)是y=4x+1,y=x+2,y=-2x+4三个函数中的最小值,则f(x)的最大值是 ______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对于每一个实数x,设函数f(x)是y=4x+1,y=x+2,y=-2x+4三个函数中的最小值,则f(x)的最大值是 ________.

查看答案和解析>>


同步练习册答案