精英家教网 > 高中数学 > 题目详情
设函数F(x)=
f(x)
ex
是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(2)>e2f(0),f(2012)>e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)<e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)
相关习题

科目:高中数学 来源:安徽模拟 题型:单选题

设函数F(x)=
f(x)
ex
是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(2)>e2f(0),f(2012)>e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)<e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设函数F(x)=
f(x)
ex
是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)=
1
3
ax3+bx2+cx+2
同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=[
1
3
x3-f(x)]•ex,求函数g(x)在[m,m+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数f(x)=
1
3
ax3+bx2+cx+2
同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数;
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=[
1
3
x3-f(x)]•ex,求函数g(x)在[m,m+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)同时满足以下条件:①f(x+1)=-f(x)对任意的x都成立;②当x∈[0,1]时,f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然对数的底数,m是常数).记f(x)在区间[2013,2016]上的零点个数为n,则(  )
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设f(x)是定义在R上的奇函数,当x>0时,f(x)=ex-2,则f(x)的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)总有导函数f′(x),定义F(x)=exf(x),G(x)=
f(x)ex
,x∈R,e=2.71828一是自然对数的底数.
(1)若f(x)>0,且f(x)+f′(x)<0,试分别判断函数F(x)和G(x)的单调性:
(2)若f(x)=x2-3x+3,x∈R.
①当x∈[-2,t](t>1)时,求函数F(x)的最小值:
②设g(x)=F(x)+(x-2)ex,是否存在[a,b]⊆(1,+∞),使得{g(x)|x∈[a,b]}=[a,b]?若存在,请求出一组a,b的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的奇函数,当x<0时,f(x)=x+ex,则f(ln3)=(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省双鸭山一中高一(上)期中数学试卷(解析版) 题型:选择题

设f(x)是定义在R上的奇函数,当x>0时,f(x)=ex-2,则f(x)的零点个数是( )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州市安溪县铭选中学高三(上)数学课外活动练习(文科)(解析版) 题型:选择题

设f(x)是定义在R上的奇函数,当x>0时,f(x)=ex-2,则f(x)的零点个数是( )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>


同步练习册答案