精英家教网 > 高中数学 > 题目详情
椭圆
x2
4
+
y2
3
=1
的准线方程是(  )
A.x=4B.x=±
1
4
C.x=±4D.x=
1
4
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
4
+
y2
3
=1
的准线方程是(  )
A.x=4B.x=±
1
4
C.x=±4D.x=
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心在原点,准线方程为x=±4,离心为
1
2
的椭圆方程是(  )
A.
x2
4
+
y2
3
=1
B.
x2
3
+
y2
4
=1
C.
x2
4
+y2=1
D.x2+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列各组命题中,满足“‘p或q’为真、‘p且q’为假、‘非p’为真”的是(  )
A.p:0=φ;q:0∈φ
B.p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数
C.p:a+b≥2
ab
(a,b∈R)
;q:不等式|x|>x的解集是(-∞,0)
D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:椭圆
x2
4
+
y2
3
=1
的一条准线方程是x=4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为______(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下各个关于圆锥曲线的命题中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条;
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中真命题的序号为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下各个关于圆锥曲线的命题中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条;
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中真命题的序号为______(写出所有真命题的序号)

查看答案和解析>>


同步练习册答案