精英家教网 > 高中数学 > 题目详情
已知f′(x)是f(x)的导函数,在区间[0,+∞)上f′(x)>0,且偶函数f(x)满足f(2x-1)<
1
3
,则x的取值范围是(  )
A.(
1
3
2
3
B.(-∞,
2
3
)
C.(
1
2
2
3
D.[
1
2
2
3
相关习题

科目:高中数学 来源: 题型:

已知f′(x)是f(x)的导函数,在区间[0,+∞)上f′(x)>0,且偶函数f(x)满足f(2x-1)<
1
3
,则x的取值范围是(  )
A、(
1
3
2
3
B、(-∞,
2
3
)
C、(
1
2
2
3
D、[
1
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m-2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设g(x)=
1x
+aln(x+1)-2a
在点(1,g(1))处的切线与y轴垂直,求g(x)的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(x)是f(x)的导函数,在区间[0,+∞)上f′(x)>0,且偶函数f(x)满足f(2x-1)<f(
13
)
,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(x)是f(x)的导函数,在区间[0,+∞)上f′(x)>0,且偶函数f(x)满足f(2x-1)<f(
1
3
)
,则x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(x)是f(x)的导函数且f′(x)的图象如图所示,则f(x)的图象只可能是(  )

查看答案和解析>>

科目:高中数学 来源:2010年广东省茂名市高考数学二模试卷(理科)(解析版) 题型:解答题

已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m-2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设,若g(x)>0在定义域内恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m-2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设数学公式在点(1,g(1))处的切线与y轴垂直,求g(x)的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m-2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设数学公式,若g(x)>0在定义域内恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f′(x)是f(x)的导函数,在区间[0,+∞)上f′(x)>0,且偶函数f(x)满足f(2x-1)<
1
3
,则x的取值范围是(  )
A.(
1
3
2
3
B.(-∞,
2
3
)
C.(
1
2
2
3
D.[
1
2
2
3

查看答案和解析>>

科目:高中数学 来源:茂名二模 题型:解答题

已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m-2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设g(x)=
1
x+1
+af(x),(a≠0)
,若g(x)>0在定义域内恒成立,求实数a的取值范围.

查看答案和解析>>


同步练习册答案