精英家教网 > 高中数学 > 题目详情
若a,b是任意非零实数,且a>b,则(  )
A.lg(a-b)>0B.2a>2bC.(
1
2
)a>(
1
2
)b
D.
1
a
1
b
相关习题

科目:高中数学 来源: 题型:

若a,b是任意非零实数,且a>b,则(  )
A、lg(a-b)>0
B、2a>2b
C、(
1
2
)a>(
1
2
)b
D、
1
a
1
b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b是任意非零实数,且a>b,则(  )
A.lg(a-b)>0B.2a>2bC.(
1
2
)a>(
1
2
)b
D.
1
a
1
b

查看答案和解析>>

科目:高中数学 来源:2008年11月北京市北大附中高中高一(上)课改数学模块水平监测(必修1)(解析版) 题型:选择题

若a,b是任意非零实数,且a>b,则( )
A.lg(a-b)>0
B.2a>2b
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:044

选择题:

(1)如果ab是两个单位向量,那么下列四个结论中正确的是

[  ]

(A)ab

(B)a·b1

(C)

(D)

(2)对于任意向量ab,下列命题中正确的是

[  ]

(A)ab满足,且ab同向,则ab

(B)

(C)

(D)

(3)在四边形ABCD中,若,则

[  ]

(A)ABCD是矩形

(B)ABCD是菱形

(C)ABCD是正方形

(D)ABCD是平行四边形

(4)a是非零向量,λ是非零实数,下列结论中正确的是

[  ]

(A)a与-λa的方向相反

(B)

(C)a的方向相同

(D)

(5)MABCD的对角线的交点,O为任意一点,则等于

[  ]

(A)

(B)2

(C)3

(D)4

(6)下列各组向量中,可以作为基底的是

[  ]

(A)

(B)

(C)

(D)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
 是空间任意的非零向量,且相互不共线,则以下命题中:
①(
a
?
b
)?
c
-(
c
?
a
 )?
b
=0;②|
a
|+|
b
|>|
a
-
b
|;③若存在唯一实数组λ,μ,γ 使γ
c
a
b
,则
a
b
c
共面;④|
a
-
b
|?|
c
|=|
a
c
-
b
c
|.真命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.
(Ⅰ)判断函数f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设f(x)是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,求实数x的取值范围;
(Ⅲ)若函数g(x)=mx+
x2+2x+n
是区间[-2,+∞)上的“平底型”函数,求m和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.
(1)判断函数f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否为R上的“平底型”函数?并说明理由;
(2)若函数g(x)=x+
x2+2x+n
是区间[-2,+∞)上的“平底型”函数,求n的值.
(3)设f(x)是(1)中的“平底型”函数,k为非零常数,若不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.
(Ⅰ)判断函数f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设f(x)是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,求实数x的取值范围;
(Ⅲ)若函数数学公式是区间[-2,+∞)上的“平底型”函数,求m和n的值.

查看答案和解析>>


同步练习册答案