精英家教网 > 高中数学 > 题目详情
已知数列{an}是等比数列,且a1=
1
8
,a4=-1,则{an}的公比q为(  )
A.
1
2
B.-
1
2
C.2D.-2
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,且a1=
1
8
,a4=-1,则{an}的公比q为(  )
A、2
B、-
1
2
C、-2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,且a1=
1
8
,a4=-1,则{an}的公比q为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}是等比数列,且a1=
1
8
,a4=-1,则{an}的公比q为(  )
A.
1
2
B.-
1
2
C.2D.-2

查看答案和解析>>

科目:高中数学 来源:深圳模拟 题型:单选题

已知数列{an}是等比数列,且a1=
1
8
,a4=-1,则{an}的公比q为(  )
A.2B.-
1
2
C.-2D.
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为零的等差数列,a1=1,且a3是a1和a9的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Snf(n)=
Sn(n+18)Sn+1
,试问当n为何值时,f(n)最大?并求出f(n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ为实数,且λ≠-18,n为正整数.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)求数列{an}的通项公式an
(2)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i值;
(3)是否存在常数k,使得数列{
Sn+kn
}为等差数列,若存在,求出常数k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:烟台一模 题型:解答题

已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i的值;
(2)设bn=
n
(2n+1)Sn
,是否存在一个最小的常数m使得b1+b2+…+bn<m对于任意的正整数n均成立,若存在,求出常数m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省南通市六县一市高三(上)期末冲刺数学试卷(解析版) 题型:解答题

已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)求数列{an}的通项公式an
(2)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i值;
(3)是否存在常数k,使得数列{}为等差数列,若存在,求出常数k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i的值;
(2)设bn=
n(2n+1)Sn
,是否存在一个最小的常数m使得b1+b2+…+bn<m对于任意的正整数n均成立,若存在,求出常数m;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案